• 제목/요약/키워드: Tricalcium silicate cement

검색결과 21건 처리시간 0.021초

Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report

  • Villat, Cyril;Grosgogeat, Brigitte;Seux, Dominique;Farge, Pierre
    • Restorative Dentistry and Endodontics
    • /
    • 제38권4호
    • /
    • pp.258-262
    • /
    • 2013
  • The restorative management of deep carious lesions and the preservation of pulp vitality of immature teeth present real challenges for dental practitioners. New tricalcium silicate cements are of interest in the treatment of such cases. This case describes the immediate management and the follow-up of an extensive carious lesion on an immature second right mandibular premolar. Following anesthesia and rubber dam isolation, the carious lesion was removed and a partial pulpotomy was performed. After obtaining hemostasis, the exposed pulp was covered with a tricalcium silicate cement (Biodentine, Septodont) and a glass ionomer cement (Fuji IX extra, GC Corp.) restoration was placed over the tricalcium silicate cement. A review appointment was arranged after seven days, where the tooth was asymptomatic with the patient reporting no pain during the intervening period. At both 3 and 6 mon follow up, it was noted that the tooth was vital, with normal responses to thermal tests. Radiographic examination of the tooth indicated dentin-bridge formation in the pulp chamber and the continuous root formation. This case report demonstrates a fast tissue response both at the pulpal and root dentin level. The use of tricalcium silicate cement should be considered as a conservative intervention in the treatment of symptomatic immature teeth.

시멘트 초기 수화과정에 대한 유기혼화제의 영향(I) (Effect of Organic Admixture(Calcium Lignosulfonate) (I) on the Early Hydration Process of Protland Cement)

  • 문정연;최상홀
    • 한국세라믹학회지
    • /
    • 제21권2호
    • /
    • pp.143-148
    • /
    • 1984
  • In this study we mainly dealt with the effects of organic retarder(calcium lignosulfate) on the early hydration process of clinker minerals. From a consideration of the hydration process of tricalcium silicate $(C_3S)$ tricalcium silicate $(C_3S)$-tricalcium aluminate $(C_3A)$ tricalcium silicate $(C_3S)$-tetracalcium aluminof-errite $(C_4AF)$ systems with calcium lignosulfate the following results were obtained. 1. when 0.25wt% of CLS was added to $C_3S$ the hydration process was progressed normally but adding of 0.5wt% its hydration was greatly retarded. 2. The hydration of $C_3S$-$C_3A$ system was progressed normally up to 0.5wt% but by adding gypsum its hydration was retarded slightly. 3. The hydration of $C_3S$-$C_4AF$ system was greatly retarded even with 0.25wt% of CLS but by adding gypsum its hydration process was recovered normally.

  • PDF

원자짝 분포 함수를 이용한 칼슘 실리케이트 경화체의 나노 구조 변형 거동 해석 (Nanostructural Deformation Analysis of Tricalcium Silicate Paste by Atomic Pair Distribution Function)

  • 배성철;장유현;지현석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.94-95
    • /
    • 2016
  • Calcium Silicate Hydrate (C-S-H), which takes up most of the hydration products of Portland Cement (PC), has the greatest impact on the mechanical behavior and strength development of concrete. The exact mechanism of its deformation, however, has not yet been elucidated. The present study aims to demonstrate the mechanism of nano-deformation behavior of C-S-H in tricalcium silicate paste under compressive loading, unloading and reloading by interpreting atomic pair distribution function (PDF) based on synchrotron X-ray scattering. The strain of the tricalcium silicate paste for a short-range of 0 ~ 20 Å under compressive load exhibited two stages, I) nano-packing of interlayer of C-S-H and II) micro-packing of C-S-H globules, whereas the deformation for a long-range order of 20 ~ 40 Å was similar to that of a calcium hydroxide phase measured by Bragg peak shift. Moreover, the residual strains due to the plastic deformation of C-S-H was clearly observed.

  • PDF

Portland Cement Clinker 생성반응에 미치는 $CaSO_4$$BaSO_4$의 영향 (Effect of $CaSO_4$ and $BaSO_4$ on the Formation of Portland Cement Clinker)

  • 서일영;최상흘
    • 한국세라믹학회지
    • /
    • 제11권1호
    • /
    • pp.29-35
    • /
    • 1974
  • Effect of calcium sulfate and barium sulfate on the formation of portland cement clinker was studied by means of chemical analysis. DTA and X-ray diffraction analysis. In the presence of liquid phase, effect of the additives on the formation of tricalcium silicate was examined according to the reaction, 2CaO.$SiO_3$+CaO$\longrightarrow$3CaO.$SiO_3$, which is the principal reaction in portland cement clinkerization, and optimum conditions in firing clinker concerning amount of additive, firing time and temperature were determined, and its kinetics was referred to. The experimental results are summerized as follow: (1) Appropriate burning temperature range of cement clinker is more limited as the content of calcium sulfate in clinker is increased. Amount of calcium sulfate, firing time and temperature in proper condition of clinkerization is related to each others. Being added suitable quantity of calcium sulfate, firing temperature of clinker can be lowered about $100^{\circ}C$. (2) When 3-5 mole% of calcium sulfate is added, firing time of 15-30 minutes at about $1380^{\circ}C$ is reasonable, and if the content is over7 mole %, firing for 1 hr. or more at $1350^{\circ}C$ is anticipated to be optimum condition. (3) In the reaction of tricalcium silicate formation, the role of barium sulfate as a mineralizer is similar to that of calcium sulfate, but the optimum firing temperature of cement clinker containing barium sulfate tends to be 20-$30^{\circ}C$ higher than that of clinker containing calcium sulfate. (4) When barium sulfate is used as mineralizer, 2-3 mole % of it to tricalcium silicate is recommended and if it is added more than this amount, free CaO is increased rapidly in clinker and alite formation is inhibited.

  • PDF

광화제 첨가가 포틀랜드 시멘트의 Tricalcium Silicate 생성에 미치는 영향 (Effects of Mineralizer Addition on the Formation of Tricalcium Silicate in Portland Cement)

  • 김인태;이창봉;김윤호
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1417-1422
    • /
    • 1994
  • Effect of MgO, CaSO4, and CaF2 addition on the formation of clinker minerals in portland cement have been investigated by measuring the amounts of free-CaO and C3S in the fired specimens and analyzing the Mg and S concentration in C3S and C2S. It was found that CaSO4 inhibited C3S formation but MgO addition offset this effect of CaSO4. MgO addition also enhanced the mineralizing effect of CaSO4+CaF2, resulting in the acceleration of C3S formation. It was suggested that Mg might inhibit the formation of sulphate compounds rim around C2S and thus C2S+CaOlongrightarrowC3S reaction was facilitated.

  • PDF

Microstructural modelling of the elastic properties of tricalcium silicate pastes at early ages

  • Do, Huy Q.;Bishnoi, Shashank;Scrivener, Karen L.
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.125-140
    • /
    • 2015
  • This paper describes the numerical calculation of elastic properties of a simulated microstructure of cement paste from very early age, when most previous models fail to give accurate results. The development of elastic properties of tricalcium silicate pastes was calculated by discretising a numerical resolution-free 3D vector microstructure to a regular cubic mesh. Due to the connections formed in the microstructure as an artefact of the meshing procedure, the simulated elastic moduli were found to be higher than expected. Furthermore, the percolation of the solids was found to occur even before hydration started. A procedure to remove these artefacts, on the basis of the information available in the vector microstructures was developed. After this correction, a better agreement of the experimental results with calculations was obtained between 20% and 40% hydration. However, percolation threshold was found to be delayed significantly. More realistic estimates of percolation threshold were obtained if either flocculation or a densification of calcium silicate hydrate with hydration was assumed.

광중합 시간과 거리의 변화에 따른 TheraCal LC의 중합도 평가 (Evaluation of the Changes in Polymerization of TheraCal LC with Various Light-curing Time and Distance)

  • 배상용;이제우;라지영
    • 대한소아치과학회지
    • /
    • 제46권4호
    • /
    • pp.392-399
    • /
    • 2019
  • 이 연구의 목적은 tricalcium silicate cement 중 하나인 TheraCal LC의 광중합 시간과 거리에 따른 중합도를 평가하는 것이었다. 금속주형을 이용해 시편을 제작하여 Vickers hardness number (VHN)를 측정하였으며, 중합시간과 조사시간에 따른 시편의 미세경도 값을 비교 분석하였다. 그 결과, 모든 군에서 상면의 VHN이 하면의 VHN보다 유의성 있게 컸다(p < 0.05). 하면의 VHN은 모든 중합거리에서 중합시간이 증가함에 따라 유의하게 증가하였고(p < 0.05), 중합시간이 일정하고 중합거리가 4.0 mm 이상이 되었을 때 유의하게 감소하였다(p < 0.05). 또한 시편을 20초간 중합한 경우 하면의 VHN은 2를 넘지 못했으며 이는 상면의 10%에 해당하였다. 이 연구 결과에 의하면, 모든 중합거리에서 TheraCal LC 시편의 하면까지 중합하기에 20초의 광중합 시간은 충분하지 않았으며, 중합도를 높이기 위해서 중합시간의 증가와 도포 두께의 감소를 고려해볼 필요가 있다.

Tricalcum-silicate 기반 치수복조제의 미세누출 및 상아질 전단결합강도 비교 (Comparison of the Microleakage and Shear Bond Strength to Dentine of Different Tricalcium Silicate-based Pulp Capping Materials)

  • 김미리;조완선;지명관;이상호;이난영
    • 대한소아치과학회지
    • /
    • 제46권1호
    • /
    • pp.76-84
    • /
    • 2019
  • 이 연구의 목적은 3종의 수복재료와 3종의 tricalcium-silicate 기반 치수복조제의 미세누출을 평가하고, 이들 치수복조제와 상아질 사이의 전단결합강도를 비교하는 것이다. 수복재료로는 복합레진(CR), 레진강화형 글래스아이오노머 시멘트(RMGI), 그리고 전통적인 글래스아이오노머 시멘트(GIC)를, 치수복조제로는 TheraCal $LC^{(R)}$(TLC), $Biodentine^{(R)}$ (BD), 그리고 $ProRoot^{(R)}$ white MTA (WMTA)을 사용했다. 소의 절치에 5급와동을 형성하여 이를 적용하는 치수복조제와 수복재료에 따라 9개의 그룹으로 분류하고 0.5% fuchsin 용액을 이용한 염색침투법을 시행했다. 각 표본을 절단하고 입체현미경으로 관찰해 미세누출 정도를 평가했다. 아크릴 레진에 소 절치의 임상적 치관을 매몰한 후 수평으로 절단해 준비한 표본을 임의로 3그룹으로 나누었다. 표본의 상아질에 그룹별로 TLC, BD, 그리고 WMTA 블록을 적용한 후 universal testing machine을 이용해 전단결합강도를 측정했다. 미세누출은 TLC + GIC, TLC + RMGI, TLC + CR, 그리고 BD + GIC 그룹에서 가장 적었고, WMTA + RMGI와 WMTA + CR 그룹에서 가장 많았다. 전단결합강도는 WMTA 그룹에서 다른 그룹보다 통계적으로 유의하게 낮은 것으로 나타났다.

C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성 (Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration)

  • 안태윤;라정민;박준형;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF