• Title/Summary/Keyword: Tributaries

Search Result 415, Processing Time 0.026 seconds

Identification of Microzooplankton Seasonality Using Time Series Analysis

  • Park, Gyung-Soo;Harold G. Marshall
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.165-176
    • /
    • 1998
  • Seasonal changes in microzooplankton abundance were identified in the mesohaline Chesapeake Bay and several tributaries from July 1992 through December 1995. Ciliates numerically dominated, comprising over 90% of the total microzooplankton density and aloricate ciliates usually outnumbered loricate ciliates. Copepod nauplii accounted for the highest microzooplankton biomass (>75% in dry weight). Rotifers made small contributions to the total microzooplankton density and biomass (<5%). Time series analysis indicated a twelve month cycle in microzooplankton abundance, and mid-summer(August) peaks for copepod nauplii, and a spring through fall peaks (May-October) for ciliates. Rotifers showed two seasonal peaks: one in mid-summer(August) at the river stations and the other in mid-winter(February) at the mesohaline stations. Seasonal peaks of copepod nauplii and rotifers coincided with the mesozooplankton abundance peak. On the other hand, ciliate maximum usually occurred between the phytoplankton and mesozooplankton peaks. This pattern of microzooplankton seasonality suggests the intermediate trophic role of microzooplankton (especially ciliates) between the phytoplankton(especially picophytoplankton) and mesozooplankton in Chesapeake Bay and its tributaries.

  • PDF

Water Quality Management of the Youngsan River based on the 7Q10 and Q275 considering Wastewater Treatment Cost (하수처리비용을 감안하고 7Q10과 저수량에 기초한 영산강 수질관리방안 연구)

  • Cho, Jae-Heon;Yu, Tai-Jong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.700-709
    • /
    • 2002
  • Present condition of the Youngsan River pollution is serious. Concentrations of organic materials and nutrients are high and algal bloom takes place frequently. The pollution is mainly caused by domestic wastewater input from urban areas like Kwangju and Naju City. In this study, 6 times of water quality surveys were done for mainstream and tributaries. Delivery ratios of each tributaries are calculated with the water quality and flow data. With Arc/View GIS, sub-basin are divided and pollution loads are estimated. These data are used for water quality modeling. River quality improvement effects are analysed with 5 scenarios including process upgrade of present WWTPs and construction of new WWTPs. These scenarios are applied for the Youngsan River based on the 7Q10 and Q275. And total wastewater treatment cost in the basin is analysed for each scenario.

Primary Productivity of Phytoplankton in a Eutrophic River (Kum River System) (부영양 하천(금강)에서 식물플랑크톤의 일차생산력)

  • Shin, Myoung-Sun;Lee, Yunkyung;Park, Ju-Hyun;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • The middle and lower reaches of the Kum River system become stagnant in dry seasons with florishing of phytoplankton. In this study primary productivity of phytoplankton were measured by the C-14 uptake method and the P-I model method at seven main stream sites of the Kum River from the Daechung Dam outet to the river mouth. Nutrients (TN, TP, DIP, TIN) concentrations were measured in the mainstream and tributaries and compared with the variation of assimilation number. The range of primary productivity was $40{\sim}4,558mgC{\cdot}m^{-2}{\cdot}day^{-1}$ and it was higher than those of lentic ecosystems in Korea. Average TN and TP were $4.1mgN{\cdot}L^{-1}$, $70.6mgP{\cdot}m^{-3}$, respectively. Tributaries showed higher nutrient concentrations than the main stream. After two major tributaries merged with the discharging water of the Daechung Dam phyotplankton biomass and productivity increased drastically and remained at the similar eutrophic level through the downstream reach to the river mouth. Both dissolved phosphorus and nitrogen concentrations showed positive correlation with assimilation number of phytoplankton. In conclusion phytoplankton productivity is at the level of eutrophic water and it was higher than usual lentic habitats. Nutrient concentrations are critical factors in controlling productivity in the lower reach of the Kum River.

Evaluation of Water Quality Characteristics and Water Quality Improvement Grade Classification of Geumho River Tributaries (금호강 수계 지류하천의 수질 특성 평가 및 수질개선 등급화 방안)

  • Jung, Kang-Young;Ahn, Jung-Min;Kim, KyoSik;Lee, In Jung;Yang, Duk Seok
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.767-787
    • /
    • 2016
  • In this study, we analyzed on-site monitoring data for 15 tributaries in Geumho watersheds for 3 years (2011-2013) in order to sort out priorities on water quality characteristics and improvement. As a result of estimating contribution to contamination of the tributary rivers, Dalseocheon showed the highest load densities, despite the smallest watershed area, with 22.7% $BOD_5$, 30.7% $COD_{Mn}$, 31.3% TOC and 47.6% TP. After conducting PCA (principal component analysis) and FA (factor analysis) to analyze water quality characteristics of the tributary rivers, the first factor was classified as $COD_{Mn}$, TOC, EC, TP and $BOD_5$, the second factor as pH, Chl-a and DO, the third factor as water temperature and TN, and the fourth factor as SS and surface flow. In addition, arithmetical sum of each factor's scores based on grading criteria revealed that Dalseocheon and Namcheon were classified into Group A for their highest scores - 96 and 93, respectively -, and selected as rivers that require water environmental management measures the most. Also, water environmental contamination inspection showed that Palgeocheon had the most number of aquatic factors to be controlled: $BOD_5$, $COD_{Mn}$, SS, TOC, T-P, Chl-a, etc.

Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측)

  • Shin, Chang Min;Na, Eun Hye;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

Rare Vascular Anomalies in the Femoral Triangle During Varicose Vein Surgery

  • Kim, Duk Sil;Kim, Sung Wan;Lee, Hyun Seok;Byun, Kyung Hwan;Choe, Michael SungPil
    • Journal of Chest Surgery
    • /
    • v.50 no.2
    • /
    • pp.99-104
    • /
    • 2017
  • Background: We observed several cases of rare vascular anomalies within the femoral triangle during varicose vein operations. Methods: From among 2,093 patients who underwent stripping operations of the great saphenous vein between January 2002 and June 2016, 14 cases of rare vascular anomalies were enrolled in this study. Results: Twelve cases of femoral artery and vein transposition (0.57%), 1 case of separate entrance of the great saphenous vein trunk and its tributaries (0.05%), and 1 case of separate entrance with femoral artery and vein transposition (0.05%) were observed. The preoperative diagnosis rate was 71% (10 of 14) using duplex ultrasound. In all cases of femoral artery and vein transposition, the saphenofemoral junction was located at the lateral or posterolateral side of the superficial femoral artery, corresponding to complete or incomplete transposition, respectively. Among the 12 cases of femoral artery and vein transposition, 5 cases were complete transposition and 7 cases were incomplete transposition. In 2 cases of separate entrance of the great saphenous vein trunk and its tributaries, the separated tributaries formed a common trunk before connecting to the femoral vein. Conclusion: The anatomy of the saphenofemoral junction may infrequently be altered in some individuals. Detailed preoperative sonographic examinations and meticulous groin dissection during the operation are necessary to prepare for unexpected anatomical variations.

Comparison of Changes in Upstream and Downstream Water Quality of Tributary Rivers: Gyeseong-stream and Hwapo-stream in Nakdongmiryang Watershed (지류하천의 상·하류 수질변화 비교: 낙동밀양 중권역 내 계성천 화포천을 대상으로)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Kim, Seongmin;Kim, Youngseok;Kim, Jin-pil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.445-452
    • /
    • 2020
  • Tributary is a part of life space for people and a very important place that accommodates rest recreation and other daily activities. absolutely insufficient basic data about water quality and flow rate are available for basin management. Efficient water and basin management systems, which are also supported by local residents can be established by securing such basic data of major tributaries in the Nakdong river system. In this study, the fluctuation characteristics of upstream and downstream water pollution levels were compared using the measurement results of the water environment measurement network and the tributary monitoring project for the gyeseong-stream and Hwapo-stream in the Nakdong-miryang watershed. In 2017, when water pollution is the highest, it was confirmed that the annual average rainfall was the lowest. Although the upstream and downstream water quality tendencies of the Gyeseong-stream are similar, the water quality concentrations of the Gyeseong-stream are relatively different. But although the Hwapo stream has various causes of pollution, there was not much difference in the level of pollution between the upper and lower streams. In addition, both rivers need the ability to purify rivers by securing sufficient water for river maintenance, and if the correlation between water quality items can be inferred through continuous monitoring of tributaries where the aspect of water quality change is unclear, water quality management Determined to be efficient operation.

Analyzing Flow Variation and Stratification of Paldang Reservoir Using High-frequency W ater Temperature Data (고빈도 수온 자료를 이용한 팔당호의 성층과 흐름 변화 분석)

  • Ryu, In-Gu;Lee, Bo-Mi;Cho, Yong-Chul;Choi, Hwang-Jeong;Shin, Dong-Seok;Kim, Sang-Hun;Yu, Soon-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.392-404
    • /
    • 2020
  • The focus of this study was to quantify the thermal stratification and analyze the relationship between the stratification structure and the tributaries to understand flow variations in the Paldang Reservoir. The vertical distribution of the temperature and density gradients, and the depth and thickness of the thermocline were quantitatively calculated using a lake physics tool (rLakeAnalyzer) and high-frequency monitoring data. Based on a density gradient of 0.2 kg/㎥/m, the thermocline was formed from mid-May to early-September 2019 and the other periods were weakly stratified or mixed. The thickness of the thermocline was developed until 4.7 m and the depth of the thermocline was formed at a depth of 3 - 6 m at the front of the Paldang Reservoir. During the formation of the thermocline, the Namhangang and Gyeongancheon tributaries with relatively high water temperature (low-density) flowed into the upper layer of the reservoir, and the Bukhangang tributary with low water temperature (high-density) mainly affected the lower layer of the reservoir. This is because the density currents were formed due to the difference in the water temperature of the tributaries. The findings of this study may be used for constructing high-frequency monitoring and quantitative data analyses of reservoirs.