• Title/Summary/Keyword: Tribology test

Search Result 677, Processing Time 0.023 seconds

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

A Study on Contamination Sensitivity and Condition Monitoring for a Pump (펌프의 오염 민감도와 성능 감시에 대한 연구)

  • 이재천
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.124-130
    • /
    • 1998
  • A mathematical model describing gear pump flow degradation in the presense of abrasive particles is presented. The model considers the operating parameters as Sommerfeld number, so that contamination sensitivity test results could be conversed to field application to predict contamination service life. A method to estimate the volumetric efficiency and the contamination level of a pump is proposed by measuring the temperature differences in the fluid. Test results show the validity of the theoretical establishments.

  • PDF

A Study on the Friction Force Onaracteristics of Valve Train System in Gasoline Engine (가솔린기관의 밸브트레인 마찰특성)

  • 윤정의;이만희;김재석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.30-37
    • /
    • 1998
  • It is well known that reduction of friction loss due to the valve train system greatly affects on improvement of fuel economy in internal combustion engine. In order to investigate friction characteristics of valve train system we carried out friction force measurement using test rig developed by ourselves. From test results, we concluded that characteristics of lubrication and friction torque on the valve train system such as mixed and hydrodynamic was mainly governed the contact type between cam and tappet.

  • PDF

Relationship between Take-off Behavior of Hard-disk Slider and AE Signal (하드디스크 슬라이더의 부상 특성과 AE신호의 관계)

  • 이상민;문재택;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.310-317
    • /
    • 1999
  • Acoustic emission(AE) signal has been widely utilized to monitor the interaction at the head/disk interface. In this work the relationship between the AE signal and the state of contact between the slider and the disk is presented. Results of the FFT analyses of the AE signal could be used to better understand the interfacial interaction. Also, it was found that wear particles affect the AE signal. Therefore, the signal can be used to monitor the wear particle presence at the interface.

  • PDF

Evaluation of Failure Modes and Adhesion of DLC Films by Scratch Test (스크래치 시험을 통한 DLC 박막 파손과 밀착 특성 평가)

  • Kim, Ju Hee;Park, Chanhyung;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.127-133
    • /
    • 2017
  • In order to characterize the adhesive properties and failure mechanisms of diamond-like carbon (DLC) films of two different thicknesses (130 nm and $1.2{\mu}m$), deposited by plasma-enhanced chemical vapor deposition on a Si substrate, scratch testing with a micro-indenter ($12.5{\mu}m$ tip radius) was performed under a linearly increasing load. These scratch tests were conducted under the same test conditions for both films. The critical load of each film was estimated from the scratch test results, based on a sharp increase in the coefficient of friction and a clear distinction of failure modes. The critical load was the basis for evaluating the adhesion strength of the films, and the $1.2{\mu}m-thick$ DLC film had superior adhesion strength. For better understanding of the failure modes, the following analyses were conducted: friction behavior and scratch tracks analysis using scanning electron microscopy, energy-dispersive spectroscopy, and 3-D profilometry. The scratch test results showed that failure modes were related to the thickness of the films. The 130 nm-thick DLC film underwent cohesive failure modes (cracks and chipping) before reaching to a gross failure stage. On the other hand, the thicker DLC film ($1.2{\mu}m-thick$) did not exhibit micro cracks before a sudden gross failure of the film together with the evidence of cracking and chipping of the Si substrate.

Mechanism of Lubricity Improvement by Biodiesels (바이오디젤 윤활성 향상 메커니즘)

  • Lim, Young-Kwan;Lee, Jae-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • As an alternative fuel, biodiesel has excellent lubricating property. Previously, our research group reported that the properties of biodiesels depended on their composed molecular structure. In this study, we investigate lubricity and the mechanism of lubricity improvement of synthesized biodiesel molecules. We synthesize four types of biodiesel components from fatty acid via fisher esterification and soybean biodiesel from soybean oil via transesterification in high yield (92-96%). We analyze the lubricity of the five 5 types of biodiesel using HFRR (high frequency reciprocating rig). We estimate that the mechanism of lubricity is relevant to the molecular structure and structure conversion of biodiesel. The test results indicate that the longer the length of molecules and the higher the content of olefin, the better the lubricity of the biodiesel molecules. However, the wear scar size of the first test samples’ do not show a regular pattern with the wear scar size of the second test samples’. Moreover, we investigated the structure conversion of the biodiesels by using GC-MS for the recovered biodiesel samples from the HFRR test. However, we do not detect structure conversion. Thus, we conclude that the lubricity of biodiesel depends on how effectively solid adsorption and boundary lubrication occurs based on the size of the molecule and the content of olefin in the molecule. In addition, HFRR test condition in not sufficient for Diels-Alder cyclization of biodiesel components.

Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing (정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험)

  • Lee, Donghyun;Kim, Byungock;Jung, Junha;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

Experimental Identification of the Damping Characteristics of a Squeeze Film Damper with Open Ends and Central Groove (열린 끝단과 중앙 홈을 갖는 스퀴즈 필름 댐퍼의 감쇠 특성에 대한 실험적 규명)

  • Nam Kyu Kim;Tae Ho Kim;Kyungdae Kang
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2024
  • This paper presents the development of a squeeze film damper (SFD) test rig and experimental identification of the effects of clearance, damper length, journal eccentricity ratio, excitation amplitude, oil supply pressure, and oil flow rate on the damping coefficients of a test SFD with open ends and a central groove. Test data are compared with predictions from a simple model developed for short SFDs with open ends and a central groove. The test results show a significant decrease in the damping coefficient with increasing clearance and a dramatic increase with damper length, which are in good agreement with the simple model predictions. According to the simple model, the damping coefficient is inversely proportional to the cube of the clearance and directly proportional to the cube of the length. An increase in the journal eccentricity ratio results in a dramatic increase in the damping coefficient by as much as 15 times that of the concentric case, particularly at low excitation frequencies. By contrast, the measured damping coefficient remains almost constant with changes in the excitation amplitude and supply pressure, which are not major factors in the damper design. In general, the test data agree well with the simple model predictions, excluding cases that show increases in the SFD length and journal eccentricity, which indicate significant dependency on the excitation frequency.

Wear Characteristics of $Cr_{2}O_{3}\;and\;ZrO_{2}$Coating Materials by Plasma Spray ($Cr_2O_3$$ZrO_{2}$ 플라즈마 용사한 코팅재의 마모 특성)

  • Kim, Sung-Ig;Kim, Hee-Gon;Lee, Bong-Gil;Kim, Gui-Shik
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.335-341
    • /
    • 2006
  • This paper reports the wear characteristics of two types of coating materials, which are $Cr_2O_3$ and $ZrO_2$, by coated plasma thermal spray method. The wear test was carried out under air, grease, and bearing fluid conditions. The wear testing machine of a pin-on disk type were used to measure friction forces, friction coefficients and the weight losses of the coating specimens on the various sliding velocity and loading condition. The wear surface of specimens were observed by scanning electron microscope (SEM) photographs.

Sliding We3f Properties for 5%Co-5%V-1%Nb High Speed Steel by Powder Metallurgy at High Temperature (5%Co-5%V-1%Nb 분말고속도공구강의 고온 미끄럼마모특성)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • In metal cutting at the tool-chip interface, friction generates considerable amount of heat. Thus, the knowledge of wear properties of cutting tool material in high temperature has been as one of important factors in need of clarification. The authors presented the wear properties of 5%Co-5%V-1%Nb high speed steel, fabricated by powder metallurgy, in room temperature in previous articles. The objective of this paper is to clarify the effects of temperature on its wear properties. Wear tests in sliding conditions under various temperatures have been conducted using the pin-on-disc type wear test machine. The results indicate that the wear properties of 5%Co-5%V-1%Nb high speed steel in high temperature as well as in room temperature are excellent. It may be deduced that the oxide layer formed on worn surface at high temperature is stable enough to prevent wear due to the high temperature strength of its matrix.