• Title/Summary/Keyword: Tribo-oxidation

Search Result 5, Processing Time 0.019 seconds

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

High Temperature Tribological Behaviour of Particulate Composites in the System SiC-TiC-TiB2 during Dry Oscillating Sliding

  • Wasche, Rolf;Klaffke, Dieter
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.155-161
    • /
    • 1999
  • The tribological behaviour of monolithic SiC as well as SiC-TiC and SiC-TiC-$TiB_2$ particulate composite materials has been investigated in unlubricated oscillating sliding tests against $Al_2O_3$ at temperature in the range from room temperature up to $600^{\circ}C$. At temperatures below $600^{\circ}C$ the wear rate of the systems with the composite materials was up to 20 times lower than the wear of the $Al_2O_3$/SiC system and was dominated by the oxidation of the titanium phases. At $600^{\circ}C$ the oxidation rate of the TiC and -TEX>$TiB_2$ grains becomes predominant resulting in an enhanced wear rate of the composite rate of the TiC and TiB2 grains becomes predominant resulting in an enhanced wear rate of the composite materials. The coefficient of friction shows similar values for all materials of investigation, increasing from 0.25…0.3 at room temperature to 0.7…0.8 $600^{\circ}C$. The wear of the $Al_2O_3$/SiC system is mainly abrasive at temperatures above room temperature and is characterised by an enhanced wear of the alumina ball at $600^{\circ}C$.

  • PDF

Effect of Carbon on Wear Resistance in Self-lubricating Fe-Cr-C-Mn-Cu Alloys

  • Kim, Ki Nam;Shin, Gyeong Su;Park, Myung Chul;Lee, Sung Yong;Yun, Jae Yong;Kim, Seon Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.637-643
    • /
    • 2012
  • Recently, because of safety and environmental concerns, there has been a tendency to introduce solid self-lubricating composites for bearing materials. In this paper, we developed Fe-Cr-C-Mn-Cu cast composite alloys as a self-lubricating composite and investigated the effect of carbon on the formation of protective tribofilms during sliding. The wear resistance of these materials was mainly affected by carbon concentrations due to the fact that in particular wear passed from delamination to tribo-oxidation, reducing the wear rate. The improved wear resistance likely resulted from protective tribofilms that formed on the surface during sliding.

Friction and Wear Characteristics of Bonded Film Lubricants of Organically Modified Hybrid Ceramic Binder Materials (유기변성 하이브리드 세라믹 물질을 결합제로 이용한 고체피막윤활제의 마찰마모 특성)

  • 한흥구;공호성;윤의성
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.203-210
    • /
    • 2003
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide (Ti(Opr$\^$i/)$_4$), zirconiumisopropoxide (Zr(Opr$\^$i/)$_4$) and aluminumbutoxide (Al(Obu$\^$t/)$_4$) were modified chemically by both epoxy and acrylic silane compounds. Friction and wear characteristics of the bonded solid lubricants, whose binders were of several hybrid ceramic materials, were tested with a reciprocating tribo-tester. Wear life was evaluated with respect to the heat-curing temperature, friction temperature, type of supplement lubricants, and ratio of binder materials. Test results showed that the Si-Zr hybrid ceramic materials modified by epoxy-silane compounds had a higher wear life compared to others. Sb$_2$O$_3$ was the most effective supplement lubricants in the high temperature, and BUS analyses revealed that it was caused mainly by a strong anti-oxidation effect to MoS$_2$ particles. The higher heat-curing temperature resulted in the higher wear life, and the higher friction temperature resulted in the lower wear life.

Comparison of Friction and Wear Characteristics of Thin Film Coatings Using Tribotesters at Atmospheric/Vacuum Conditions (대기압/진공 조건의 트라이보 시험기를 이용한 박막 코팅의 마찰/마모 특성 비교)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.389-395
    • /
    • 2019
  • In various industries, thin film coatings are used to improve friction and wear characteristics. Various types of tribotesters are used to evaluate the friction and wear characteristics of such thin film coatings. In this study, we fabricated a micro-tribotester and Tribo-scanning electron microscopy (SEM) to compare the friction and wear characteristics of copper (Cu) coatings under an atmospheric pressure and a vacuum condition, respectively. The reliability of the different types of tribotesters was evaluated by performing calibrations for the sensor to measure the friction forces and normal loads. Using the two different types of devices, the friction and wear tests are conducted at the same experimental conditions excluding environment conditions such as the atmospheric pressure and vacuum condition. The friction coefficient at the vacuum condition is lower than at the atmospheric pressure. This difference in friction characteristics is due to the fact that wear phenomena occur differently according to the atmospheric pressure and vacuum condition. At the atmospheric pressure, the abrasive wear is the main wear mechanism. At the vacuum condition, the adhesive wear is the main wear mechanism. The reason for the difference in the wear mechanism of the Cu coating at the atmospheric pressure and the vacuum condition is that the oxidation phenomenon, which does not appear at the vacuum condition, occurs at the atmospheric pressure; therefore, the characteristics of the Cu coating change accordingly.