• Title/Summary/Keyword: Triangular Method

Search Result 783, Processing Time 0.028 seconds

Efficient View-dependent Refinement of a Height Map (높이 맵의 효율적인 뷰 의존적 표현)

  • Chung, Yong Ho;Hwam, Won K.;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • This paper proposes a procedure enabling the extraction of view-dependent triangular approximations from a height map. In general, procedures to approximate a height map use tree hierarchies. These methods, however, have a limitation in terms of accuracy, because they depend on tree hierarchy than terrain features. To overcome the difficult, we apply the simplification method for triangular meshes to a height map. The proposed procedure maintains full decimation procedure to support multiresolution. The maintenance of decimation procedure results in creation of the groups (trees), each of which consists of vertices that can be merged into one vertex (root node). As the groups have tolerance which is determined by some tests, they support the generation of view-dependent arbitrary triangular meshes.

Automatic Generation of Triangular Shell Element Meshes on Mid-Surface in Shell Structure (셸 구조물의 중간면에 대한 삼각형 셸 요소망의 자동생성)

  • Moon, Yeon-Cheol;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.451-460
    • /
    • 2007
  • The surface of 3D shell structure is created by using NURBS and nodes for generating finite element mesh on the surface are created by using external node offset method. In so doing the shortest distance between nodes on the top and bottom surface is searched and then the coordinates of nodes are determined by calculating the mid point of them in the middle of top and bottom surface. Triangular elements are formed on mid surface, and the average aspect ratio of the generated triangular elements are over 0.9.

Geometrically Non-linear Analysis of Shell Structures (쉘구조물의 기하학적 비선형해석)

  • Jang, Myung-Ho;Kim, Jae-Yeol;Sur, Sam-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.85-92
    • /
    • 2003
  • In this work, a finite element model is presented for geometrically non-linear analysis of shell structures. Finite element by using a three-node flat triangular shell element is formulated. The non-linear incremental equilibrium equations are formulated by using an updated Lagrangian formulation and the solutions are obtained with the incremental/iterative Newton-Raphson method and arc length method. Some of results are presented for shell structures. The obtained results are in good agreement with the results available in existing literature.

  • PDF

Offset of STL Model Generated from Solid Model (솔리드 STL 모델의 옵셋 방법)

  • Kim, Su-Jin;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.202-211
    • /
    • 2005
  • This paper introduces and illustrates the results of a new method fer offsetting triangular mesh by moving all vertices along the multiple normal vectors of a vertex. The multiple normal vectors of a vertex are set the same as the normal vectors of the faces surrounding the vertex, while the two vectors with the smallest difference are joined repeatedly until the difference is smaller than allowance. Offsetting with the multiple normal vectors of a vertex does not create a gap or overlap at the smooth edges, thereby making the mesh size uniform and the computation time short. In addition, this offsetting method is accurate at the sharp edges because the vertices are moved to the normal directions of faces and joined by the blend surface. The method is also useful for rapid prototyping and tool path generation if the triangular mesh is tessellated part of the solid models with curved surfaces and sharp edges. The suggested method and previous methods are implemented on a PC using C++ and illustrated using an OpenGL library.

The elastoplastic formulation of polygonal element method based on triangular finite meshes

  • Cai, Yong-Chang;Zhu, He-Hua;Guo, Sheng-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.119-129
    • /
    • 2008
  • A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal elements. The Wachspress rational finite element basis function is used to construct the approximations of polygonal elements. The incremental variational form and a von Mises type model are used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are presented to verify the advantages and the accuracy of the numerical formulation.

Tetrahedral Mesh Generation by Using the Advancing-Front Method and the Optimal Surface Triangular Mesh Generation Technique (전진경계기법과 최적 표면 삼각형 요소망 생성 기법을 이용한 사면체 요소망의 생성)

  • Lee M.C.;Joun M.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.138-147
    • /
    • 2006
  • A systematic approach to tetrahedral element or mesh generation, based on an advancing-front method and an optimal triangular mesh generation technique on the surface, is presented in this paper. The possible internal nodes are obtained by the octree-decomposition scheme. The initial tetrahedral mesh system is constructed by the advancing-front method and then it is improved by the quality improvement processes including mesh swapping and nodal smoothing. The approach is evaluated by investigating the normalized length, the normalized volume, the dihedral angle and the normalized quality

Topology optimization of Reissner-Mindlin plates using multi-material discrete shear gap method

  • Minh-Ngoc Nguyen;Wonsik Jung;Soomi Shin;Joowon Kang;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.365-374
    • /
    • 2023
  • This paper presents a new scheme for constructing locking-free finite elements in thick and thin plates, called Discrete Shear Gap element (DSG), using multiphase material topology optimization for triangular elements of Reissner-Mindlin plates. Besides, common methods are also presented in this article, such as quadrilateral element (Q4) and reduced integration method. Moreover, when the plate gets too thin, the transverse shear-locking problem arises. To avoid that phenomenon, the stabilized discrete shear gap technique is utilized in the DSG3 system stiffness matrix formulation. The accuracy and efficiency of DSG are demonstrated by the numerical examples, and many superior properties are presented, such as being a strong competitor to the common kind of Q4 elements in the static topology optimization and its computed results are confirmed against those derived from the three-node triangular element, and other existing solutions.

A Method of Masking Based on Multiplicative Noise (잡음을 이용한 가계조사자료의 정보노출제한방법)

  • Jeong, Dong-Myeong;Kim, Jay-J.;Kim, Kyung-Mi
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.141-151
    • /
    • 2009
  • According to the type of microdata, the various methods have been in use for masking microdata. Multiplicative noise is the one of popular schemes for masking continuous variables. In this paper, we introduce the method of masking based on multiplicative noise and show some results of the application on the 2006 Householder Income and Expenditure Survey (HIES) data. To create the multiplicative noise factor, we used the triangular distribution. truncated triangular distribution, trapezoidal distribution, and double triangular distribution. Also, formulas for the domain estimation for the data masked by the multiplicative noise are developed.

Simulation of stationary Gaussian stochastic wind velocity field

  • Ding, Quanshun;Zhu, Ledong;Xiang, Haifan
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.231-243
    • /
    • 2006
  • An improvement to the spectral representation algorithm for the simulation of wind velocity fields on large scale structures is proposed in this paper. The method proposed by Deodatis (1996) serves as the basis of the improved algorithm. Firstly, an interpolation approximation is introduced to simplify the computation of the lower triangular matrix with the Cholesky decomposition of the cross-spectral density (CSD) matrix, since each element of the triangular matrix varies continuously with the wind spectra frequency. Fast Fourier Transform (FFT) technique is used to further enhance the efficiency of computation. Secondly, as an alternative spectral representation, the vectors of the triangular matrix in the Deodatis formula are replaced using an appropriate number of eigenvectors with the spectral decomposition of the CSD matrix. Lastly, a turbulent wind velocity field through a vertical plane on a long-span bridge (span-wise) is simulated to illustrate the proposed schemes. It is noted that the proposed schemes require less computer memory and are more efficiently simulated than that obtained using the existing traditional method. Furthermore, the reliability of the interpolation approximation in the simulation of wind velocity field is confirmed.

Power Spectra of the Hybrid Random PWM(HRPWM) Technique Adopting a Random Triangular Carrier (랜덤 삼각파 캐리어를 적용한 하이브리드 랜덤 PWM(HRPWM)방식의 파워 스펙트럼)

  • Kim Ki-Seon;Lim Young-Cheol;Park Sung-Jun;Kim Kwang-Heon;Jung Young-Gook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.501-507
    • /
    • 2005
  • This paper proposes a Hybrid Random PWM(HRPWM) technique using a LF2407 DSP board in order to spread the power spectra of an induction motor. The proposed method is composed to the PRBS (Pseudo-Random Binary Sequence) with the Lead-Lag random bit and the random triangular carrier for the logical comparison. Also, a DSP generates the random number, the PRBS and the three-phase reference signal, a MAX038 chip operating as frequency modulator generates the random triangular carrier. For verification of the proposed method, the experiments were conducted with a three-phase adjustable speed a.c drives, and the results of simulations and experiments are presented.