• Title/Summary/Keyword: Tri-rotor

Search Result 7, Processing Time 0.022 seconds

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.

Conceptual Design of a Multi-Rotor Unmanned Aerial Vehicle based on an Axiomatic Design

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.126-130
    • /
    • 2010
  • This paper presents the conceptual design of a multi-rotor unmanned aerial vehicle (UAV) based on an axiomatic design. In most aerial vehicle design approaches, design configurations are affected by past and current design tendencies as well as an engineer's preferences. In order to design a systematic design framework and provide fruitful design configurations for a new type of rotorcraft, the axiomatic design theory is applied to the conceptual design process. Axiomatic design is a design methodology of a system that uses two design axioms by applying matrix methods to systematically analyze the transformation of customer needs into functional requirements (FRs), design parameters (DPs), and process variables. This paper deals with two conceptual rotary wing UAV designs, and the evaluations of tri-rotor and quad-rotor UAVs with proposed axiomatic approach. In this design methodology, design configurations are mainly affected by the selection of FRs, constraints, and DPs.

Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots (멀티로터 무인비행로봇 동역학적 모델링 및 제어기법 연구)

  • Kim, Hyeon;Jeong, Heon Sul;Chong, Kil To;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • A multi-rotor is an autonomous flying robot with multiple rotors. Depending on the number of the rotors, multi-rotors are categorized as tri-, quad-, hexa-, and octo-rotor. Given their rapid maneuverability and vertical take-off and landing capabilities, multi-rotors can be used in various applications such as surveillance and reconnaissance in hostile urban areas surrounded by high-rise buildings. In this paper, the unified dynamic model of each tri-, quad-, hexa-, and octo-rotor are presented. Then, based on derived mathematical equations, the operation and control techniques of each multi-rotor are derived and analyzed. For verifying and validating the proposed models, operation and control technique simulations are carried out.

Development of an Energy Efficient Tri-Rotor Vertical Take Off and Landing Unmanned Aerial Vehicle (에너지 효율적 트리로터 수직이착륙 무인항공기 개발)

  • Park, Hee-Jin;Kong, Dong-Uck;Son, Byung-Rak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.262-268
    • /
    • 2012
  • In the recent research technical solutions have been studied to integrate renewable energy into unmanned aerial vehicles to use it as the main power source. As the weight of the aerial vehicle body is essential for its performance, we consider to use light-weight solar cell technology. Furthermore fuel cells are also integrated create a highly energy-efficient aerial robot. In this paper, construction concept and software design of the tilt-rotor aerial vehicle GAORI is introduced which uses solar cells and fuel cells as power source. The future work direction and prognosis are discussed.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Numerical Analysis on Heat Transfer and Fluid Flow Characteristics of Traction Motor for Electric Car (전동차용 견인전동기의 열유동 특성에 관한 전산해석)

  • 남성원;김영남;채준희
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.137-143
    • /
    • 1998
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of traction motor for electric car SIMPLE algorithm based on finite volume method is used to make linear algebra equation. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction. From the results of simulation, the characteristics of cooling pattern is strongly affected by the size of hole in stator core. In the case of high rotational speed of rotor, temperature difference along the axial direction is more decreased than that of low rotational speed.

  • PDF

Dynamic Modeling and Stabilization of a Tri-Ducted Fan Unmanned Aerial Vehicles using Lyapunov Control (삼중 덕티드 팬 비행체 운동모델링 및 리아푸노프 제어를 이용한 안정화)

  • Na, Kyung-Seok;Won, Dae-Hee;Yoon, Seok-Hwan;Sung, Sang-Kyung;Ryu, Min-Hyoung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.574-581
    • /
    • 2012
  • Because of the exposed blade, the UAV using the rotors entail the risks during operation. While a wrapped duct around the fan blades reduces risks, it is a higher thrust performance than the same power load rotor. In this paper, for applying advantages of a ducted fan, the tri-ducted fan air vehicle configuration is proposed. The vehicle has three ducted fans. Two of them are the same shape and size and the third one is the smaller. It is possible to control a rapid attitude stability using thrust vector control. The equations of motion of the tri-ducted fan were derived. Lyapunov control input was applied to the system and stable inputs were derived. A nonlinear simulation was fulfilled by using parameters of a prototype vehicle. It verified a stable attitude and analyzed results.