• Title/Summary/Keyword: Trend detection

Search Result 393, Processing Time 0.027 seconds

An Emerging Technology Trend Identifier Based on the Citation and the Change of Academic and Industrial Popularity (학계와 산업계의 정보 대중성 변동과 인용 정보에 기반한 최신 기술 동향 식별 시스템)

  • Kim, Seonho;Lee, Junkyu;Rasheed, Waqas;Yeo, Woondong
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.spc
    • /
    • pp.1171-1186
    • /
    • 2011
  • Identifying Emerging Technology Trends is crucial for decision makers of nations and organizations in order to use limited resources, such as time, money, etc., efficiently. Many researchers have proposed emerging trend detection systems based on a popularity analysis of the document, but this still needs to be improved. In this paper, an emerging trend detection classifier is proposed which uses both academic and industrial data, SCOPUS and PATSTAT. Unlike most pre-vious research, our emerging technology trend classifi-er utilizes supervised, semi-automatic, machine learning techniques to improve the precision of the results. In addition, the citation information from among the SCOPUS data is analyzed to identify the early signals of emerging technology trends.

  • PDF

A Study on Cumean - a self Starting Cusum (누적합(累積合)에서 출발(出發)한 누적평균(累積平均)에 관한 고찰(考察))

  • Jo, Jae-Ip
    • Journal of Korean Society for Quality Management
    • /
    • v.9 no.2
    • /
    • pp.26-30
    • /
    • 1981
  • A typical industrial data - monitoring scheme often requires trend detection Trend detection can be accomplished in many ways. Common statistical methods are the sign test, the run test, and the trend test. Graphical methods include various smoothing schemes and the cusum. The cusum has established itself as an efficient method of detecting changes in the mean level of a process being monitored. The cusum requires a "target value" with which the raw data are compared. At production start - up it is often difficult to designate the target value. This paper offers a means of initiating the cusum technique without a target value.

  • PDF

Detection of Ultrasonic Signals by PD at the High Voltage Winding (고압권선에서 발생하는 부분방전에 의한 초음파 신호 검출)

  • Kweon, Dong-Jin;Kwak, Hee-Ro;Chung, Sang-Jin;Kim, Han-Sang;Song, Il-Keun;Kim, Kyoung-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.456-458
    • /
    • 1995
  • This paper describes a diagnosis of power transformers by on-line detection of ultrasonic signals. Partial discharge in power transformer generates ultrasonic signals. The trend of the ultrasonic signal number can be measured when partial discharge is generated in HV Winding. The trend of the ultrasonic signal number could easily be distinguished by taking moving average. The insulation failure due to partial discharge in transformers can be predicted based in the trend analysis of the number of ultrasonic signals caused by partial discharge.

  • PDF

Big Data Analysis of Software Performance Trend using SPC with Flexible Moving Window and Fuzzy Theory (가변 윈도우 기법을 적용한 통계적 공정 제어와 퍼지추론 기법을 이용한 소프트웨어 성능 변화의 빅 데이터 분석)

  • Lee, Dong-Hun;Park, Jong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.997-1004
    • /
    • 2012
  • In enterprise software projects, performance issues have become more critical during recent decades. While developing software products, many performance tests are executed in the earlier development phase against the newly added code pieces to detect possible performance regressions. In our previous research, we introduced the framework to enable automated performance anomaly detection and reduce the analysis overhead for identifying the root causes, and showed Statistical Process Control (SPC) can be successfully applied to anomaly detection. In this paper, we explain the special performance trend in which the existing anomaly detection system can hardly detect the noticeable performance change especially when a performance regression is introduced and recovered again a while later. Within the fixed number of sampling period, the fluctuation gets aggravated and the lower and upper control limit get relaxed so that sometimes the existing system hardly detect the noticeable performance change. To resolve the issue, we apply dynamically tuned sampling window size based on the performance trend, and Fuzzy theory to find an appropriate size of the moving window.

An Improved RF Detection Algorithm Using EMD-based WT

  • Lv, Xue;Wang, Zekun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3862-3879
    • /
    • 2019
  • More and more problems for public security have occurred due to the limited solutions for drone detection especially for micro-drone in long range conditions. This paper aims at dealing with drones detection using a radar system. The radio frequency (RF) signals emitted by a controller can be acquired using the radar, which are usually too weak to extract. To detect the drone successfully, the static clutters and linear trend terms are suppressed based on the background estimation algorithm and linear trend suppression. The principal component analysis technique is used to classify the noises and effective RF signals. The automatic gain control technique is used to enhance the signal to noise ratios (SNR) of RF signals. Meanwhile, the empirical mode decomposition (EMD) based wavelet transform (WT) is developed to decrease the influences of the Gaussian white noises. Then, both the azimuth information between the drone and radar and the bandwidth of the RF signals are acquired based on the statistical analysis algorithm developed in this paper. Meanwhile, the proposed accumulation algorithm can also provide the bandwidth estimation, which can be used to make a decision accurately whether there are drones or not in the detection environments based on the probability theory. The detection performance is validated with several experiments conducted outdoors with strong interferences.

Research Status on Machine Learning for Self-Healing of Mobile Communication Network (이동통신망 자가 치유를 위한 기계학습 연구동향)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.30-42
    • /
    • 2020
  • Unlike in previous generations of mobile technology, machine learning (ML)-based self-healing research trend are currently attracting attention to provide high-quality, effective, and low-cost 5G services that need to operate in the HetNets scenario where various wireless transmission technologies are added. Self-healing plays a vital role in detecting and mitigating the faults, and confirming that there is still room for improvement. We analyzed the research trend in self-healing framework and ML-based fault detection, fault diagnosis, and fault compensation. We propose that to ensure that self-healing is a proactive instead of being reactive, we have to design an ML-based self-healing framework and select a suitable ML algorithm for fault detection, diagnosis, and outage compensation.

Joint Exponential Smoothing and Trend-based Principal Component Analysis for Anomaly Detection in Wireless Sensor Networks (무선 센서 네트워크에서의 이상 징후 감지를 위한 공동 지수 평활법 및 추세 기반 주성분 분석)

  • Dang, Thien-Binh;Yang, Hui-Gyu;Tran, Manh-Hung;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.145-148
    • /
    • 2019
  • Principal Component Analysis (PCA) is a powerful technique in data analysis and widely used to detect anomalies in Wireless Sensor Networks. However, the performance of conventional PCA is not high on time-series data collected by sensors. In this paper, we propose a Joint Exponential Smoothing and Trend-based Principal Component Analysis (JES-TBPCA) for Anomaly Detection which is based on conventional PCA. Experimental results on a real dataset show a remarkably higher performance of JES-TBPCA comparing to conventional PCA model in detection of stuck-at and offset anomalies.

Rapid Detection Methods for Agro-Food Safety

  • Kim, Gi-Young
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.157-168
    • /
    • 2009
  • Frequent outbreaks of foodborne illness have been increasing the awareness of agro-food safety. Conventional methods for pathogen detection and identification are labor.intensive and take days to complete. The increasing use of rapid food safety testing is receiving more and more attention. The major reason for this trend is that the food industry requires quick and accurate results. The rapid detection of contaminants in food is critical for ensuring the safety of consumers. Recent advances in technology make detection and identification faster, more sensitive and more specific than traditional method. In this paper, technology trends and recent developments in rapid methods for agro-food safety are discussed.

  • PDF

A Study on Fault Detection using Fuzzy Trend Monitoring Technique of UAV Turbofan Engine (퍼지 경향 감시 기법을 이용한 무인기용 터보팬 엔진의 손상 탐지에 관한 연구)

  • Kong, C.D.;Kho, S.H.;Ki, J.Y.;Kho, H.Y.;Oh, S.H.;Kim, J.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.345-349
    • /
    • 2007
  • In this study a fuzzy trend monitoring method for detecting the engine mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration. etc. Using engine condition data set as a input which generated by linear regression analysis of real engine instrument data, an application of fuzzy logic in diagnostics estimate a cause of fault in each components.

  • PDF

A Study of Non-parametric Statistical Tests to Analyze Trend in Water Quality Data (수질자료의 추세분석을 위한 비모수적 통계검정에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.93-103
    • /
    • 1995
  • This study was carried out to suggest the best statistical test to analyze the trend in monthly water quality data. Traditional parametric tests such as t-test and regression analysis are based on the assumption that the underlying population has a normal distribution and regression analysis additionally assumes that residual errors are independent. Analyzing 9-years monthly COD data collected at Paldang in Han River, the underlying population was found to be neither normal nor independent. Therefore parametric tests are invalid for trend detection. Four Kinds of nonparametric statistical tests, such as Run Test, Daniel test, Mann-Kendall test, and Time Series Residual Analysis were applied to analyze the trend in the COD data, Daniel test and Mann-Kendall test indicated upward trend in COD data. The best nonparametric test was suggested to be Daniel test, which is simple in computation and easy to understand the intuitive meaning.

  • PDF