Artificial intelligence techniques have improved fire-detection methods; however, false alarms still occur. Conventional methods detect fires using current sensors, which can lead to detection errors due to temporary environmental changes or noise. Thus, fire-detection methods must include a trend analysis of past information. We propose a deep-learning-based fire detection method using multi-sensor data and Kendall's tau. The proposed system used a BiLSTM model to predict fires using pre-processed multi-sensor data and extracted trend information. Kendall's tau indicates the trend of a time-series data as a score; therefore, it is easy to obtain a target pattern. The experimental results showed that the proposed system with trend values recorded an accuracy of 99.93% for BiLSTM and GRU models in a 20-tap moving average filter and 40% fire threshold. Thus, the proposed trend approach is more accurate than that of conventional approaches.
전 세계적으로 해운물류 안전 보안체계가 강화됨에 따라 국가물류보안 체계 구축을 위한 해운물류안전 보안 핵심기술 개발이 이루어지고 있다. 이러한 국제적 정서에 발맞추어, 국내에서도 감마선 핵종을 검출할 수 있는 휴대용 방사능 검출 장치에 대한 관심이 높아지고 있다. 본 논문에서는 휴대용 방사능 검출기의 Full-digital System을 제안하였다.
특허, 뉴스, 블로그와 같이 시간 정보가 있는 문서들로부터의 자동적인 트렌드 분석(trend analysis)은 토픽탐지 및 추적 기술(TDT: Topic Detection and Tracking)과 더불어 중요한 연구 분야로 대두되고 있다. 과거 연구들은 대부분 트렌드과 관련된 단어의 출현 빈도 정보를 이용하여 주어진 개념의 중요도를 측정하고 이 개념의 시간에 따른 트렌드 라인을 보여주는 것에 초점을 맞췄다. 신출 트렌드 (emerging trend)를 탐지하기 위해서는 주어진 개념의 출현 빈도수 변화와 같은 간단한 방법이나 학습 데이타와 비교하여 차이를 탐지하여 제시하는 방법이 사용되었다. 그러나 여러 트렌드 중에서 특징적인 트렌드를 찾아서 사용자에게 제공하기 위해서는 트렌드 순위 결정 함수가 필요하다. 본 논문은 트렌드의 다양한 측면을 정량화하기 위하여 출현 빈도로 구성된 트렌드 곡선으로부터 네 가지 속성 (변동성, 지속성, 안정성, 누적량) 을 정의하고 이를 활용한 트렌드 순위 결정 방법을 제안한다. 일련의 실험을 통하여 각 속성의 유용성을 검증하고 속성들의 조합이 순위 결정에 어떤 영향을 미치는지 분석하였다. 실험결과로부터 네 가지 속성을 모두 조합할 경우 특징적인 트렌드 탐지에 더욱 기여하는 것을 알 수 있다.
A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.
한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
/
pp.507-517
/
1997
As structures are higher, large-sized and more complex, we should detect the fire at the beginning and cope with it to reduce the loss of mankind and the physical damage due to fire. So we have investigated and developed various kinds of fire detection system, and do the efforts for minimizing the nonfire alarm. As there exists a close relationship between the technology development and the market potential, a comparison between the number of fires in special buildings and detection types were made to find out market potential based on the annual statistics on fire products inspection. In addition, we have discussed the causes of nonfire alarm and the fire detection system and prospect the research trend of the fire detection system.
구간별 상수 구조를 가지는 관측값으로부터 변화점을 식별하기 위해 FLSA가 자주 사용되고 있다. FLSA는 총변동벌점을 이용하기 때문에 평균 수준이 단조성을 가지는 경우에는 변화점 식별에서의 일치성이 보장되지 않는다는 특징이 있다. ℓ1 추세필터는 오차제곱합과 기울기 차이에 대한 ℓ1 벌점의 합을 목적함수로 가지는 구간별 선형 구조 추정방법으로 구간별 선형 구조에서의 변화점을 식별하기 위해 활용할 수 있다. 한편, ℓ1 추세필터의 경우에도 총변동벌점을 이용하므로 FLSA와 마찬가지로 변화점 식별에 있어서 비일치성을 보일 것으로 예상할 수 있는데 이와 관련된 연구는 아직까지 많이 이루어져 있지 않다. 이 연구에서는 모의실험을 통해 구간별 선형 모형에서 변화점을 식별하기 위해 사용되는 ℓ1 추세필터의 비일치성에 대해 살펴본다.
International Journal of Internet, Broadcasting and Communication
/
제14권3호
/
pp.149-154
/
2022
In recent years, the application of deep learning method to computer vision has shown to achieve great performances. Thus, many research projects have also applied deep learning technology to railroad defect detection. In this paper, we have reviewed the researches that applied computer vision based deep learning method to railroad defect detection and inspection, and have discussed the current trend and the direction of those researches. Many research projects were targeted to operate automatically without visual inspection of human and to work in real-time. Therefore, methods to speed up the computation were also investigated. The reduction of the number of learning parameters was considered important to improve computation efficiency. In addition to computation speed issue, the problem of annotation was also discussed in some research projects. To alleviate the problem of time consuming annotation, some kinds of automatic segmentation of the railroad defect or self-supervised methods have been suggested.
We propose a neural network based up-trend detector. An auto-associative neural network was trained with 'up-trend' data obtained from the KOSPI 200 future price. It was then used to predict an up-trend Simple investment strategies based on the detector achieved a two year return of $19.8\%$ with no leverage.
본 연구에서는 계측 데이터의 성능 추이를 분석하여 가스터빈 엔진의 결함 여부를 탐지하기 위한 퍼지 경향감시 방법을 제안하였다. 제안된 경향감시 방법은 연료유량, 배기가스 온도, 로터회전수, 진동수와 같은 중요 엔진 파라미터를 모니터링 하여 시간에 따른 변화를 분석하여 엔진 상태를 진단하는 것이다. 이를 위해 먼저 선형회귀분석을 통해 엔진 상태 변화를 수식화하고 퍼지 로직을 통해 진단 결과를 분석하여 예측되는 손상 원인을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.