• Title/Summary/Keyword: Trenchless method

Search Result 25, Processing Time 0.02 seconds

Restoration Efficiency Analysis of Expansive Material Implemented Trenchless Underground Cavity Restoration Method Varying Number and Location of Bore Holes (팽창재료를 이용한 지하 공동 비개착 복구공법에서 천공 개수 및 위치에 따른 복구효율 분석)

  • Choi, Byeong-Hyun;Lee, Kicheol;Lee, Junwon;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.25-37
    • /
    • 2019
  • The conventional representative underground cavity restoration methods, which are mainly open-cut methods, require high cost and long period of time for the restoration. Therefore, various trenchless restoration methods have been proposed to improve these disadvantages. The underground cavity restoration method using the expansive material proposed in this paper is one of the trenchless methods. This method fills the underground cavity with high quality backfill soils through the small hole(s) at asphalt layer and compacts backfill soils by insertion of the expansive material within the cavity. In this study, the restoration method using expansive material was constructed in acrylic chamber. The restoration efficiency of the method was analyzed by the fill ratio and degree of relative compaction according to the location and number of bore holes. As a result of the experiment, the restoration efficiency and the optimum construction location were found to be irrelevant.

Experimental analysis for the effect of integrated pipe-roof in trenchless method (비개착 일체형 파이프루프 지보효과의 실험적 분석)

  • Sim, Youngjong;Jin, Kyu-Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.377-387
    • /
    • 2016
  • In recent, in case that the underpass is constructed by trenchless method, its stability increases by reinforcing steel pipe with re-bar and mortar after propulsion into the ground to form pipe-roof. Therefore, it can be predicted that the integrated pipe-roof decreases the stress acting on the underpass by sharing load. In this study, to analyze the effect of integrated pipe-roof and behavior of stress around underpass, experimental tests for the rectangular and arch cross section of the underpass are performed using soil chamber. As a result, stress and strain acting on the underpass decrease due to sharing load by integrated pipe-roof. This phenomenon is more pronounced by increasing the stiffness of pipe-roof. Furthermore it can be expected that cross-section of underpass can be economically designed.

A numerical study on the three-dimensional ground movement by the trenchless construction method of concrete box by a square steel pipe supporting system (사각형 강관을 이용한 비개착 시공에 따른 지반거동의 분석: 수치해석)

  • Choi, Soon-Wook;Park, Young-Taek;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Ki Taek;Baek, Yong Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.469-484
    • /
    • 2012
  • This study aims to numerically investigate ground movement around a square steel pipe as well as a group of square steel pipes induced by its and their ground penetration for trenchless construction of a concrete box. From numerical results, ground movement induced by a square steel pipe is much more dominantly governed by vertical displacement rather than horizontal displacement. Ground settlement induced by pipe penetration is much larger as the overburden becomes lower. The settlement is also shown to be slightly dependent upon the sequence of pipe penetration. More careful construction management is highly in demand during the penetration of upper pipes since their induced settlement occupies approximately 75 percent of total ground settlement after the whole construction of steel pipes.

Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity (비개착식 지반공동 긴급복구를 위한 충전재료 개발에 관한 기초 연구)

  • YU, Nam-Jae;Choi, Ju-Hyun;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • Recently, there have been a lot of incidents related to ground sinks in urban areas, but restoration work is complicated and inconvenience due to on-site control, and particularly, grouting and soil filling are generally applied as recovery measures, but when the grouting or the soil filling is carried out, material segregation phenomenon occurs in the ground or a lot of restoration amount is often required, depending on the state of sinks and the existence of groundwater under the ground and the soil can be lost due to the flow of the ground water, and thus the purpose of this study is to develop a pouch-type filler applied to a trenchless method for emergency reinforcement of the ground sinks with the aim of quick recovery of the ground sink in urban areas, and as a result, it was confirmed that compression strength and the expansion ratio were different according to the temperature of ground water and the compression strength and the expansion ratio could be controlled by mixing alumina powder.

Characterization of Repairing Polyurethane for Trenchless Sewer Pipeline (비굴착 하수관로용 폴리우레탄 보수재 특성 평가)

  • Park, Jun-Ha;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3542-3547
    • /
    • 2015
  • There is commonly used the full depth excavation method of sewer pipeline maintenance in Korea. This induces couple of technical and social problems like increase of construction cost and time for excavation and backfill, increase of public complains and delay of traffic, and so force. In order to overcome these problems, lots of laboratory tests were carried out for sewer pipeline of maintenance materials with trenchless methods. The testing materials are liquid and hardened polyurethane, and polyurethane CIPP. The lab tests were followed by Korean Standard. There are no side effects, like harmless to the human body and air pollution with stink. Judging from the limited test results, all the items tested were satisfied the KS criteria.

Development of pressurizing support tunneling method and case study of its field application (가압지보 터널공법 개발 및 현장적용 사례 분석)

  • Kim, Dea-Young;Lee, Hong-Sung;Lee, Se-Jin;Lee, Hee-Kwang;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.397-419
    • /
    • 2012
  • The pressurizing support tunneling method has been developed that overcomes shortcomings of conventional trenchless methods and applied to the field. The main concept of the new method is the pressurization system which, by means of pressurization bag between outer flange of steel ribs and excavated perimeter, applies higher pressure than the pressure relaxed by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through 3D numerical analyses. The new method was applied to the construction of a 10.7 m wide, 7.9 m high and 85 m long ramp tunnel that passes under ${\bigcirc}{\bigcirc}$ Expressway. By applying the new method, the tunnel construction was successfully completed in 13.5 months which decreases construction time to 35% compared to conventional methods, and ground displacement was almost negligible.

Comparison of earth pressure around pipe-roof between UPRS and front-jacking method (UPRS 공법과 프론트잭킹 공법의 파이프루프 주변 현장토압 계측결과 비교)

  • Sim, Youngjong;Jin, Kyu-Nam;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.513-522
    • /
    • 2015
  • This study is to confirm the effect of pre-installed pipe-roof by measuring earth pressure acting on the underpass. In recently developed trenchless methods pre-inserted steel pipes before ground excavation to form pipe-roof are connected each other with re-bars and filled with mortar. In this study, focusing on the Upgraded Pipe Roof Structure method (UPRS) and Front-Jacking, earth pressure around pipe-roof is measured after insertion of steel pipe to ensure the effect of earth pressure reduction. In case of the UPRS earth pressure is considerably reduced because of the reinforced effect of pipe-roof. In case of the Front-Jacking in which the whole underpass structure is pushed into the ground, earth pressure is not reduced as expected, because the pre-installed pipes are not needed to be reinforced.

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.

An Experimental Study on the Trenchless Construction Method For Small Diameter Cable Conduits (소구경 비개착 관로건설 기술연구)

  • Seo, Dong-Seob
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.217-221
    • /
    • 2005
  • 도시의 기능이 날로 커져가고 땅속 지하매설물은 포화상태에 이르렀다. 또한 시민들의 의식 수준이 높아가면서 도시에서의 굴착시공은 민원유발과 교통소통장애 문제로 날로 어려워지고 있는 것이 현실이다. KT에서는 무인 및 유인 통신구를 건설할 수 있는 장비를 이미 개발한바 있으며, 본 연구를 통해 도심지에서 보다 효율적으로 통신관로 ${\Phi}50mm,\;{\Phi}150mm,\;{\Phi}300mm$를 시공할 수 있는 장비를 개발하게 되었다. 도시는 복잡하기 때문에 비개착 시공에 있어서 시공 점용면적이 상대적으로 많을 경우 어려움을 겪게된다. 소구경 비개착 장비인 XS-300은 길이 1.45m 폭 0.8m 높이 0.97m 이며 중량은 700kg인 소형장비인 것이 특징이다. XS-300은 도심지에서 통신맨홀 터파기 부분을 압입구로 활용할 수 있으며 경제적인 비용으로 개착식 시공이 불가한 구간에 대한 인입관로 구성과 지하장애물 하월시공, 도로횡단 시공 시에 적합한 장비이다. 특히 타 시설물을 관통한 불량통신시설과 재해에 취약한 통신시설에 대해 안전하고 경제적인 비용으로 이설시공을 할 수 있으며 통신인프라 기초시설 안정화 및 품질고도화에 기여할 수 있을 것이다.

  • PDF

A combined sewer design method using tractive force considering wastewater flow on non-rainy days and its application for improvement methods of sewer (청천시 오수량을 고려한 합류식 하수도 소류력 설계법과 이를 활용한 하수관거 개보수방안)

  • Ji, Hyon Wook;Yoo, Sung Soo;Song, Homyeon;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • When domestic sewage and rainwater runoff are discharged into a single sewer pipe, it is called a "combined sewer system." The sewage design standards in Korea specify the flow velocity based only on the volume of rainfall; therefore, sedimentation occurs on non-rainy days owing to the reduced flow rate and velocity. This sedimentation reduces the discharge capacity, causes unpleasant odors, and exacerbates the problem of combined sewer overflow concentration. To address this problem, the amount of sewage on non-rainy days, not just the volume of rainfall, should also be considered. There are various theories on sedimentation in sewer movement. This study introduces a self-cleansing velocity based on tractive force theory. By applying a self-cleansing velocity equivalent to the critical shear stress of a sand particle, sedimentation can be reduced on non-rainy days. The amount of sewage changes according to the water use pattern of citizens. The design hourly maximum wastewater flow was considered as a representative value, and the velocity of this flow should be more than the self-cleansing velocity. This design method requires a steeper gradient than existing design criteria. Therefore, the existing sewer pipelines need to be improved and repaired accordingly. In this study, five types of improvement and repair methods that can maximize the use of existing pipelines and minimize the depth of excavation are proposed. The key technologies utilized are trenchless sewer rehabilitation and complex cross-section pipes. Trenchless sewer rehabilitation is a popular sewage repair method. However, it is complex because the cross-section pipes do not have a universal design and require continuous research and development. In an old metropolis with a combined sewer system, it is difficult to carry out excavation work; hence, the methods presented in this study may be useful in the future.