• Title/Summary/Keyword: Trench

Search Result 737, Processing Time 0.023 seconds

A Novel EST with Trench Electrode to Immunize Snab-back Effect and to Obtain High Blocking Voltage

  • Kang, Ey-Goo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.33-37
    • /
    • 2001
  • A vertical trench electrode type EST has been proposed in this paper. The proposed device considerably improves snapback which leads to a lot of problems of device applications. In this paper, the vertical dual gate Emitter Switched Thyristor (EST) with trench electrode has been proposed for improving snab-back effect. It is observed that the forward blocking voltage of the proposed device is 745V. The conventional EST of the same size were no more than 633V. Because the proposed device was constructed of trench-type electrodes, the electric field moved toward trench-oxide layer, and the punch through breakdown of the proposed EST is occurred at latest.

  • PDF

A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect (CMP 연마를 통한 STI에서 결함 감소)

  • 백명기;김상용;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF

A Novel Trench Electrode BRT with Intrinsic Region for High Blocking Voltage (고내압 특성을 위한 진성영역과 트렌치 구조를 갖는 베이스 저항 사이리스터)

  • 강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.243-246
    • /
    • 2001
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effect and forward blocking voltage more than the conventional BRT. Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power devices and applicate to another power devices including IGBT, EST and etc.

  • PDF

Performance of Non Punch-Through Trench Gate Field-Stop IGBT for Power Control System and Automotive Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • In this paper, we have analyzed the electrical characteristics of 1200V trench gate field stop IGBT and have compared to NPT planar type IGBT and NPT planar field stop IGBT. As a result of analyzing, we obtained superior electrical characteristics of trench gate field stop IGBT than conventional IGBT. To begin with, the breakdown voltage characteristic was showed 1,460 V and on state voltage drop was showed 0.7 V. We obtained 3.5 V threshold voltage, too. To use these results, we have extracted optimal design and process parameter and designed trench gate field stop IGBT. The designed trench gate IGBT will use to inverter of renewable energy and automotive industry.

The Safety Assessment to Breakwater Systems by Placing Submarine Rectangular Trench (해저 Trench 설치에 의한 방파제 시스템의 안전성 평가)

  • Kim, Sung-Duk
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The present study is to estimate the effect of wave height affecting at the front face of breakwater systems, when a submarine trench is dredged in the distant offshore from outer breakwater. The wave diffraction field, which is important hydraulic factor in the ocean, is considered to be two dimensional(2D) plane and the configuration of the submarine trench on the sea bed designated by single horizontal long-rectangular system. The numerical simulation is performed by using Green function based on the boundary integral equation and meshed at moving boundary conditions. The results of present numerical simulations are illustrated by applying the normal incidence. It is shown that the ratios of wave height reduction at the front face of breakwater systems are approximately 20% by the effect of placing long trench on the sea bed. This study can effectively be utilized for safety assessment to various breakwater systems in the ocean field.

Analysis of Breakdown voltage for Trench D-MOSFET using MicroTec (MicroTec을 이용한 Trench D-MOSFET의 항복전압 분석)

  • Jung, Hak-Kee;Han, Ji-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1460-1464
    • /
    • 2010
  • In the paper, the breakdown voltage of Trench D-MOSFET have been analyzed by using MircoTec. The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high-integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. A Trench MOSFET is the most preferred power device for high voltage power applications. The oxide thickness and doping concentration in Trench MOSFET determines breakdown voltage and extensively influences on high voltage. We have investigated the breakdown voltage characteristics according to variation of doping concentration from $10^{15}cm^{-3}$ to $10^{17}cm^{-3}$ in this study. We have also investigated the breakdown voltage characteristics according to variation of oxide thickness and junction depth.

Simulation of a Novel Lateral Trench Electrode IGBT with Improved Latch-up and Forward Blocking Characteristics

  • Kang, Ey-Goo;Moon, Seung-Hyun;Kim, Sangsig;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • A new small sized Lateral Trench electrode Insulated Gate Bipolar Transistor(LTEIGBT) was proposed to improve the characteristics of conventional Lateral IGBT (LIGBT) and Lateral Trench gate IGBT (LTIGBT). The entire electrode of LTEIGBT was replace with trench-type electrode. The LTEIGBT was designed so that the width of device was no more than 19 ㎛. The Latch-up current densities of LIGBT, LTIGBT and the proposed LTEIGBT were 120A/㎠, 540A/㎠, and 1230A/㎠, respectively. The enhanced latch-up capability of the LTEIGBT was obtained through holes in the current directly reaching the cathode via the p+ cathode layer underneath n+ cathode layer. The forward blocking voltage of the LTEIGBT is 130V. Conventional LIGBT and LTIGBT of the same size were no more than 60V and 100V, respectively. Because the the proposed device was constructed of trench-type electrodes, the electric field moved toward trench-oxide layer, and punch through breakdown of LTEIGBT is occurred, lately.

  • PDF

High-Current Trench Gate DMOSFET Incorporating Current Sensing FET for Motor Driver Applications

  • Kim, Sang-Gi;Won, Jong-Il;Koo, Jin-Gun;Yang, Yil-Suk;Park, Jong-Moon;Park, Hoon-Soo;Chai, Sang-Hoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.302-305
    • /
    • 2016
  • In this paper, a low on-resistance and high current driving capability trench gate power metal-oxide-semiconductor field-effect transistor (MOSFET) incorporating a current sensing feature is proposed and evaluated. In order to realize higher cell density, higher current driving capability, cost-effective production, and higher reliability, self-aligned trench etching and hydrogen annealing techniques are developed. While maintaining low threshold voltage and simultaneously improving gate oxide integrity, the double-layer gate oxide technology was adapted. The trench gate power MOSFET was designed with a 0.6 μm trench width and 3.0 μm cell pitch. The evaluated on-resistance and breakdown voltage of the device were less than 24 mΩ and 105 V, respectively. The measured sensing ratio was approximately 70:1. Sensing ratio variations depending on the gate applied voltage of 4 V ~ 10 V were less than 5.6%.

A Study on the Ground Deformation by lowering of Slurry level after Trench Excavation (트렌치굴착 후 안정액 수위 저하에 의한 지반변형에 관한 연구)

  • Hong, Won-Pyo;Han, Jung-Geun;Shin, Kwan-Young;Lee, Mun-Ku
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1455-1460
    • /
    • 2005
  • This paper presents the results of an experimental study on the ground deformation by trench excavation for Diaphragm Wall construction. The model tests are performed to investigate the back ground deformation by lowering of slurry level in trench after excavating. Through these, the deformation characteristic of the back ground due to stress release of excavated space was investigated. This study considered relative density of soil mass and the distance between trench and surcharge. An experiment was performed in order to observe the failure pattern of a slurry-supported trench excavated in sandy ground. From model tests, in order to predict reasonably the deformation behavior of the adjacent ground due to the underground excavation, it is significantly recommended that the ground settlement by trench excavation should be considered.

  • PDF

An Analysis on Optimal Design and Electrical Characteristics of CT-IGBT(Circular Trench IGBT) (CT-IGBT의 최적 설계 및 전기적 특성에 관한 분석)

  • Kwak, Sang-Hyeon;Seo, Jun-Ho;Seo, In-Kon;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.22-23
    • /
    • 2008
  • The conventional IGBT has two problems to make the device taking high performance. The one is high on state voltage drop associated with JFET region, the other is low breakdown voltage associated with concentrating the electric field on the junction of between p base and n drift. This paper is about the structure to effectively improve both the lower on state voltage drop and the higher breakdown voltage than the conventional IGBT. For the fabrication of the circular trench IGBT with the circular trench layer, it is necessary to perform the only one wet oxidation step for the circular trench layer. Analysis on both the on state voltage drop and the Breakdown voltage show the improved values compared to the conventional IGBT structure. Because the circular trench layer disperses electric field from p base and n drift junction to circular trench, the breakdown voltage increase. The on state voltage drop decrease due to reduction of JFET region and direction change of current path which pass through reversed layer channel.

  • PDF