• Title/Summary/Keyword: TreeCRF

Search Result 3, Processing Time 0.016 seconds

Method to Construct Feature Functions of C-CRF Using Regression Tree Analysis (회귀나무 분석을 이용한 C-CRF의 특징함수 구성 방법)

  • Ahn, Gil Seung;Hur, Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.338-343
    • /
    • 2015
  • We suggest a method to configure feature functions of continuous conditional random field (C-CRF). Regression tree and similarity analysis are introduced to construct the first and second feature functions of C-CRF, respectively. Rules from the regression tree are transformed to logic functions. If a logic in the set of rules is true for a data then it returns the corresponding value of leaf node and zero, otherwise. We build an Euclidean similarity matrix to define neighborhood, which constitute the second feature function. Using two feature functions, we make a C-CRF model and an illustrate example is provided.

Korean Dependency Parsing using Second-Order TreeCRF (Second-Order TreeCRF를 이용한 한국어 의존 파싱)

  • Min, Jinwoo;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.108-111
    • /
    • 2020
  • 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔으며 현재 가장 높은 성능을 보이고 있는 그래프 기반 파서인 Biaffine 어텐션 모델은 입력 시퀀스를 다층의 LSTM을 통해 인코딩 한 후 각각 별도의 MLP를 적용하여 의존소와 지배소에 대한 표상을 얻고 이를 Biaffine 어텐션을 통해 모든 의존소에 대한 지배소의 점수를 얻는 모델이다. 위의 Biaffine 어텐션 모델은 별도의 High-Order 정보를 활용하지 않는 first-order 파싱 모델이며 학습과정에서 어떠한 트리 관련 손실을 얻지 않는다. 본 연구에서는 같은 부모를 공유하는 형제 노드에 대한 점수를 모델링하고 정답 트리에 대한 조건부 확률을 모델링 하는 Second-Order TreeCRF 모델을 한국어 의존 파싱에 적용하여 실험 결과를 보인다.

  • PDF

Eojeol Syntactic Tag Prediction of Korean Text using Entropy Guided CRF (엔트로피 지도 CRF를 이용한 한국어 어절 구문태그 예측)

  • Oh, Jin-Young;Cha, Jeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.395-399
    • /
    • 2009
  • In this work, we describe the syntactic tag prediction system for Korean using the decision tree and CRFs. Generally they select features by their intuition. It depends on their prior knowledge. In this works, we combine features systematically using the decision tree. We also analyze errors and optimize features for the best performance. From the result of experiments, we can see that the proposed method is effective for the syntactic tag estimation and will be helpful for the syntactic analysis.