• Title/Summary/Keyword: Tree-based algorithms

Search Result 385, Processing Time 0.025 seconds

A Study on a Prototype Learning Model (프로토타입 학습 모델에 관한 연구)

  • 송두헌
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2001
  • We describe a new representation for learning concepts that differs from the traditional decision tree and rule induction algorithms. Our algorithm PROLEARN learns one or more prototype per class and follows instance based classification with them. Prototype here differs from psychological term in that we can have more than one prototype per concept and also differs from other instance based algorithms since the prototype is a "ficticious ideal example". We show that PROLEARN is as good as the traditional machine learning algorithms but much move stable than them in an environment that has noise or changing training set, what we call 'stability’.tability’.

  • PDF

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Public Key Authentication using(t, n) Threshold Scheme for WSN ((t, n) 임계치 기법을 이용한 센서네트워크에서의 공개키 인증)

  • Kim, Jun-Yop;Kim, Wan-Ju;Lee, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.58-70
    • /
    • 2008
  • Earlier researches on Sensor Networks preferred symmetric key-based authentication schemes in consideration of limitations in network resources. However, recent advancements in cryptographic algorithms and sensor-node manufacturing techniques have opened suggestion to public key-based solutions such as Merkle tree-based schemes. These previous schemes, however, must perform the authentication process one-by-one in hierarchical manner and thus are not fit to be used as primary authentication methods in sensor networks which require mass of multiple authentications at any given time. This paper proposes a new concept of public key-based authentication that can be effectively applied to sensor networks. This scheme is based on exponential distributed data concept, a derivative from Shamir's (t, n) threshold scheme, in which the authentication of neighbouring nodes are done simultaneously while minimising resources of sensor nodes and providing network scalability. The performance advantages of this scheme on memory usage, communication overload and scalability compared to Merkle tree-based authentication are clearly demonstrated using performance analysis.

Prediction of Larix kaempferi Stand Growth in Gangwon, Korea, Using Machine Learning Algorithms

  • Hyo-Bin Ji;Jin-Woo Park;Jung-Kee Choi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, we sought to compare and evaluate the accuracy and predictive performance of machine learning algorithms for estimating the growth of individual Larix kaempferi trees in Gangwon Province, Korea. We employed linear regression, random forest, XGBoost, and LightGBM algorithms to predict tree growth using monitoring data organized based on different thinning intensities. Furthermore, we compared and evaluated the goodness-of-fit of these models using metrics such as the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). The results revealed that XGBoost provided the highest goodness-of-fit, with an R2 value of 0.62 across all thinning intensities, while also yielding the lowest values for MAE and RMSE, thereby indicating the best model fit. When predicting the growth volume of individual trees after 3 years using the XGBoost model, the agreement was exceptionally high, reaching approximately 97% for all stand sites in accordance with the different thinning intensities. Notably, in non-thinned plots, the predicted volumes were approximately 2.1 m3 lower than the actual volumes; however, the agreement remained highly accurate at approximately 99.5%. These findings will contribute to the development of growth prediction models for individual trees using machine learning algorithms.

Two Attribute-based Broadcast Encryption Algorithms based on the Binary Tree (이진트리 기반의 속성기반 암호전송 알고리즘)

  • Lee, Moon Sik;Kim, HongTae;Hong, Jeoung Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.358-363
    • /
    • 2014
  • In this paper, we present two constructions of the attribute-based broadcast encryption(ABBE) algorithm. Attribute-based encryption(ABE) algorithm enables an access control mechanism over encrypted data by specifying access policies among private keys and ciphertexts. ABBE algorithm can be used to construct ABE algorithm with revocation mechanism. Revocation has a useful property that revocation can be done without affecting any non-revoked uers. The main difference between our algorithm and the classical ones derived from the complete subtree paradigm which is apt for military hierarchy. Our algorithm improve the efficiency from the previously best ABBE algorithm, in particular, our algorithm allows one to select or revoke users by sending ciphertext of constant size with respect to the number of attributes and by storing logarithm secret key size of the number of users. Therefore, our algorithm can be an option to applications where computation cost is a top priority and can be applied to military technologies in the near future.

Improved Minimum Spanning Tree based Image Segmentation with Guided Matting

  • Wang, Weixing;Tu, Angyan;Bergholm, Fredrik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.211-230
    • /
    • 2022
  • In image segmentation, for the condition that objects (targets) and background in an image are intertwined or their common boundaries are vague as well as their textures are similar, and the targets in images are greatly variable, the deep learning might be difficult to use. Hence, a new method based on graph theory and guided feathering is proposed. First, it uses a guided feathering algorithm to initially separate the objects from background roughly, then, the image is separated into two different images: foreground image and background image, subsequently, the two images are segmented accurately by using the improved graph-based algorithm respectively, and finally, the two segmented images are merged together as the final segmentation result. For the graph-based new algorithm, it is improved based on MST in three main aspects: (1) the differences between the functions of intra-regional and inter-regional; (2) the function of edge weight; and (3) re-merge mechanism after segmentation in graph mapping. Compared to the traditional algorithms such as region merging, ordinary MST and thresholding, the studied algorithm has the better segmentation accuracy and effect, therefore it has the significant superiority.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

SOME CHARACTERIZATIONS OF DOUBY CHORDAL GRAPHS

  • Kim, Chang-Hwa
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.65-72
    • /
    • 1998
  • Many optimization problems like domination and Steiner tree are NP-complete on chordal graphs but can be solved in polyno-mial time on doubly chordal graphs. Investigating properties of dou-bly chordal graphs probably help to design efficient algorithms for the graphs. We present some characterizations of dobly chordal graphs which are based on clique matrices and neighborhood matrics also men-tioned how a doubly perfect elimination ordering of a doubly chordal graph can be computed from the results.

Evaluation of Classification Algorithm Performance of Sentiment Analysis Using Entropy Score (엔트로피 점수를 이용한 감성분석 분류알고리즘의 수행도 평가)

  • Park, Man-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1153-1158
    • /
    • 2018
  • Online customer evaluations and social media information among a variety of information sources are critical for businesses as it influences the customer's decision making. There are limitations on the time and money that the survey will ask to identify a variety of customers' needs and complaints. The customer review data at online shopping malls provide the ideal data sources for analyzing customer sentiment about their products. In this study, we collected product reviews data on the smartphone of Samsung and Apple from Amazon. We applied five classification algorithms which are used as representative sentiment analysis techniques in previous studies. The five algorithms are based on support vector machines, bagging, random forest, classification or regression tree and maximum entropy. In this study, we proposed entropy score which can comprehensively evaluate the performance of classification algorithm. As a result of evaluating five algorithms using an entropy score, the SVMs algorithm's entropy score was ranked highest.

Method for Assessing Landslide Susceptibility Using SMOTE and Classification Algorithms (SMOTE와 분류 기법을 활용한 산사태 위험 지역 결정 방법)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.5-12
    • /
    • 2023
  • Proactive assessment of landslide susceptibility is necessary for minimizing casualties. This study proposes a methodology for classifying the landslide safety factor using a classification algorithm based on machine learning techniques. The high-risk area model is adopted to perform the classification and eight geotechnical parameters are adopted as inputs. Four classification algorithms-namely decision tree, k-nearest neighbor, logistic regression, and random forest-are employed for comparing classification accuracy for the safety factors ranging between 1.2 and 2.0. Notably, a high accuracy is demonstrated in the safety factor range of 1.2~1.7, but a relatively low accuracy is obtained in the range of 1.8~2.0. To overcome this issue, the synthetic minority over-sampling technique (SMOTE) is adopted to generate additional data. The application of SMOTE improves the average accuracy by ~250% in the safety factor range of 1.8~2.0. The results demonstrate that SMOTE algorithm improves the accuracy of classification algorithms when applied to geotechnical data.