• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.031 seconds

A Detailed Analysis of Classifier Ensembles for Intrusion Detection in Wireless Network

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1203-1212
    • /
    • 2017
  • Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.

Efficient Mining E-Shopper's Purchase Behavior Based on Maximal Frequent Patterns (최대 빈발 패턴을 이용한 온라인 쇼핑객의 구매규칙에 대한 효율적인 마이닝)

  • Jo, Jae-Hyun;Karim, Md. Rezaul;Jeong, Byeong-Soo
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1357-1360
    • /
    • 2012
  • 온라인 쇼핑객의 구매 규칙을 예견하기 위해 기업은 데이터 마이닝 기법을 사용하는데, 최대 빈발 패턴은 특정한 고객의 구매 원칙을 드러내기 때문에, 최대 빈발 패턴에 대한 마이닝은 최근 시장 분석에서 핵심적 이슈가 되고 있다. 본 논문에서 우리는 오리지널 데이터세트로부터 널 트랜잭션(Null Transaction)을 제거한 후, 최대 빈발 패턴을 발생시키기 위한 BRE-트리(Bottom-up Row Enumeration Tree)를 적용시켰다. 다음으로 온라인 거래 데이터베이스에서 고객 구매 규칙의 마이닝을 위한 항목들 간의 거리를 계산하기 위해, SCL(Sequence Close Level)의 변형된 버전을 사용하였다. 실험결과는 합리적인 시간 내에 고객의 구매 규칙을 더 정확하게 예견할 수 있음을 보여준다.

Density-based Outlier Detection in Multi-dimensional Datasets

  • Wang, Xite;Cao, Zhixin;Zhan, Rongjuan;Bai, Mei;Ma, Qian;Li, Guanyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3815-3835
    • /
    • 2022
  • Density-based outlier detection is one of the hot issues in data mining. A point is determined as outlier on basis of the density of points near them. The existing density-based detection algorithms have high time complexity, in order to reduce the time complexity, a new outlier detection algorithm DODMD (Density-based Outlier Detection in Multidimensional Datasets) is proposed. Firstly, on the basis of ZH-tree, the concept of micro-cluster is introduced. Each leaf node is regarded as a micro-cluster, and the micro-cluster is calculated to achieve the purpose of batch filtering. In order to obtain n sets of approximate outliers quickly, a greedy method is used to calculate the boundary of LOF and mark the minimum value as LOFmin. Secondly, the outliers can filtered out by LOFmin, the real outliers are calculated, and then the result set is updated to make the boundary closer. Finally, the accuracy and efficiency of DODMD algorithm are verified on real dataset and synthetic dataset respectively.

STATISTICAL MODELLING USING DATA MINING TOOLS IN MERGERS AND ACQUISITION WITH REGARDS TO MANUFACTURE & SERVICE SECTOR

  • KALAIVANI, S.;SIVAKUMAR, K.;VIJAYARANGAM, J.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.563-575
    • /
    • 2022
  • Many organizations seek statistical modelling facilitated by data analytics technologies for determining the prediction models associated with M&A (Merger and Acquisition). By combining these data analytics tool alongside with data collection approaches aids organizations towards M&A decision making, followed by achieving profitable insights as well. It promotes for better visibility, overall improvements and effective negotiation strategies for post-M&A integration. This paper explores on the impact of pre and post integration of M&A in a standard organizational setting via devising a suitable statistical model via employing techniques such as Naïve Bayes, K-nearest neighbour (KNN), and Decision Tree & Support Vector Machine (SVM).

Mining Frequent Trajectory Patterns in RFID Data Streams (RFID 데이터 스트림에서 이동궤적 패턴의 탐사)

  • Seo, Sung-Bo;Lee, Yong-Mi;Lee, Jun-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho;Park, Jin-Soo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.127-136
    • /
    • 2009
  • This paper proposes an on-line mining algorithm of moving trajectory patterns in RFID data streams considering changing characteristics over time and constraints of single-pass data scan. Since RFID, sensor, and mobile network technology have been rapidly developed, many researchers have been recently focused on the study of real-time data gathering from real-world and mining the useful patterns from them. Previous researches for sequential patterns or moving trajectory patterns based on stream data have an extremely time-consum ing problem because of multi-pass database scan and tree traversal, and they also did not consider the time-changing characteristics of stream data. The proposed method preserves the sequential strength of 2-lengths frequent patterns in binary relationship table using the time-evolving graph to exactly reflect changes of RFID data stream from time to time. In addition, in order to solve the problem of the repetitive data scans, the proposed algorithm infers candidate k-lengths moving trajectory patterns beforehand at a time point t, and then extracts the patterns after screening the candidate patterns by only one-pass at a time point t+1. Through the experiment, the proposed method shows the superior performance in respect of time and space complexity than the Apriori-like method according as the reduction ratio of candidate sets is about 7 percent.

  • PDF

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

An Exploratory Study of Fatigue Related Factors among School Personnelin Seoul by Data mining (데이터 마이닝을 이용한 서울시교직원의 피로요인 탐색연구)

  • Lee, Hui-U;Sin, Seon-Mi
    • Journal of the Korean Society of School Health
    • /
    • v.19 no.1
    • /
    • pp.79-88
    • /
    • 2006
  • Purpose : To identify general characteristics of school personnel with recent fatigue which was the most frequent symptom among subjective symptoms and to explore fatigue-related factors by evaluating physical and perceived health status, life style, and symptoms through data mining techniques. Methods : We collected a data of the 1,147(male 545, female 602) who were elementary, middle, or high school personnel, answered a questionnaire, and received physical examination in Seoul School Health Center from September to November in 2000. And we investigated the differences between fatigue group and non-fatigue group for demographic characteristics, physical health status, perceived health status, symptoms, and laboratory values by frequency, chi-square test, t-test, or simple logistic regression analysis by SAS package 8.1, and then selected significant variables as input variables of a decision tree analysis of CART model by SAS E-miner. Results : In general characteristics, the fatigue consisted of 41.1%(male 35.2%, female 46.4%) among 1,147 school personnel. In classical statistics, factors related with fatigue were female, lower means of systolic and diastolic pressure, young age, personnel in middle school, irregular eating habit, no exercise a week or less than 30minutes exercise a day, perception of unhealthy status, and subjective symptoms including short of breath at exercise. In simple logistic regression to examine the relationship between selected independent variables and fatigue as a dependent variable, the odds ratio of gender (female vs male) was 1.58 times, and young age ( 20s vs 60s) 20.67 times, and middle vs high school personnel 1.86 times. However, we mined combined several characteristics by SAS-E miner. In CART model, if health perception was healthy, and age was >= 37.5 years, the proportion of the fatigue was only 19.3%. but if health perception was not healthy and symptom was severe 'short of breath' during exercise and age was < 53.5 years, and BMI was >= 22.69, the proportion of the fatigue was up to 84.8%. Conclusions : The fatigue consisted of 41.1%(male 35.2%, female 46.4%). In classical statistics, fatigue-related factors among school personnel were young age, female gender, perceived unhealthy status, subjective physical symptoms, poor life-style, and lower blood pressure rather than only physical health status. However, in data mining, if health perception was healthy and age was >= 37.5 years, the proportion of the fatigue was only 19.3%. but if health perception was not healthy and symptom was severe 'short of breath' during exercise and age was < 53.5 years, and BMI was >= 22.69, the proportion of the fatigue was up to 84.8%.

Effective Studying Methods during a School Vacation: A Data Mining Approach (데이타 마이닝을 사용한 방학 중 학습방법과 학업성취도의 관계 분석)

  • Kim, Hea-Suk;Moon, Yang-Sae;Kim, Jin-Ho;Loh, Woong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2007
  • To improve academic achievement, the most students not only participate in regular classes but also take various extra programs such as private lessons, private institutes, and educational TV programs. In this paper, we propose a data mining approach to identify which studying methods or usual life patterns during a school vacation affect changes in the academic achievement. First, we derive various studying methods and life patterns that are thought to be affecting changes in the academic achievement during a school vacation. Second, we propose the method of transforming and analyzing data to apply them to decision trees and association rules, which are representative data mining techniques. Third, we construct decision trees and find association rules from the real survey data of middle school students. We have discovered four representative results from the decision trees. First, for students in the higher rank, there is a tendency that private institutes give a positive effect on the academic achievement. Second, for the most students, the Internet teaming sites nay give a negative effect on the achievement. Third, private lessons that have thought to be making a large impact to the achievement, however, do not make a positive effect on the achievement. Fourth, taking several studying methods in parallel nay give a negative effect on the achievement. In association rules, however, we cannot find any meaningful relationships between academic achievement and usual life patterns during a school vacation. We believe that our approach will be very helpful for teachers and parents to give a good direction both in preparing a studying plan and in selecting studying methods during a school vacation.

A Study of The Determinants of Turnover Intention and Organizational Commitment by Data Mining (데이터마이닝을 활용한 이직의도와 조직몰입의 결정요인에 대한 연구)

  • Choi, Young Joon;Shim, Won Shul;Baek, Seung Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.1
    • /
    • pp.21-31
    • /
    • 2014
  • In this article, data mining simulation is applied to find a proper approach and results of analysis for study of variables related to organization. Also, turnover intention and organizational commitment are used as target (dependent) variables in this simulation. Classification and regression tree (CART) with ensemble methods are used in this study for simulation. Human capital corporate panel data of Korea Research Institute for Vocation Education & Training (KRIVET) is used. The panel data is collected in 2005, 2007, and 2009. Organizational commitment variables are analyzed with combined measure variables which are created after investigation of reliability and single dimensionality for multiple-item measurement details. The results of this study are as follows. First, major determinants of turnover intention are trust, communication, and talent management-oriented trend. Second, the main determining factors for organizational commitment are trust, the number of years worked, innovation, communication. CART with ensemble methods has two ensemble CART methods which are CART with Bagging and CART with Arcing. Comparing two methods, CART with Arcing (Arc-x4) extracted scenarios with very high coefficients of determination. In this study, a scenario with maximum coefficient of determinant and minimum error is obtained and practical implications are presented. Using one of data mining methods, CART with ensemble method. Also, the limitation and future research are discussed.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.