In the medical web forum, people share medical experience and information as patients and patents' families. Some people search medical information written in non-expert language and some people offer words of comport to who are suffering from diseases. Medical web forums play a role of the informative support and the emotional support. We propose the automatic classification model of articles in the medical web forum into the information support and emotional support. We extract text features of articles in web forum using text mining techniques from the perspective of linguistics and then perform supervised learning to classify texts into the information support and the emotional support types. We adopt the Support Vector Machine (SVM), Naive-Bayesian, decision tree for automatic classification. We apply the proposed model to the HealthBoards forum, which is also one of the largest and most dynamic medical web forum.
본 연구는 데이터마이닝 기법을 이용하여 건강보험청구료에 있어서 이상정도가 심한 요양기관을 탐지하고, 실제 의료영역에 적용하기 위한 시스템 개발을 목적으로 한다. 현재 건강보험 심사평가원의 이상탐지시스템은 평가대상이 되는 항목을 개별적으로 평가하고, 탐지된 기관의 선정 이유에 대한 근거제시가 부족한 단점을 가지고 있다. 따라서 본 연구에서는 항목을 종합적으로 평가할 수 있는 정량적 지표를 설계하고, 항목들의 상대적 중요도를 파악할 수 있도록 항목들에 대한 가중치 부여한다. 또한 지표에서 얻어진 값으로 등급을 구분하고, 의사결정나무기법(decision tree)를 이용하여 해석력을 높이는 방법을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.346-348
/
2002
웹 마이닝은 크게 구조 마이닝, 컨텐츠 마이닝, 사용 마이닝으로 분류될 수 있다. 이 중에서도 사용 마이닝은 사용자의 로그 데이터를 바탕으로 사용자가 탐색한 웹 페이지의 순서를 추출하거나 연관관계를 분석하는 작업이다. 특히 웹에 기반을 둔 애플리케이션의 요구를 충족시키기 위해서 사용 마이닝은 웹 마이닝에 있어서 중요한 부분으로 부각되고 있다. 본 논문에서는 사용자들의 웹 페이지의 방문 패턴을 분석하여, 미래행동을 예측하는 것을 문제로 삼고, 사용자들의 이용패턴을 SASOM(Strtcture-Adaptive SOM)분류기들의 DT(Decision Tree)앙상블을 이용하여 분류하는 방법을 제안해보았다. MS웹 데이터를 가지고 SASOM 분류기의 집합을 DT를 이용하여 결합한 결과, 분류기 하나만 사용한 경우 보다 더 좋은 결과를 얻어, 3.5% 이하의 낮은 오류율을 보였다.
Journal of the Korea Society of Computer and Information
/
v.22
no.10
/
pp.121-128
/
2017
In this paper, we propose a multi-label classification method in which multi-label classification estimation techniques are applied to resolving location prediction problem. Most of previous studies related to location prediction have focused on the use of single-label classification by using contextual information such as user's movement paths, demographic information, etc. However, in this paper, we focused on the case where users are free to visit multiple locations, forcing decision-makers to use multi-labeled dataset. By using 2373 contextual dataset which was compiled from college students, we have obtained the best results with classifiers such as bagging, random subspace, and decision tree with the multi-label classification estimation methods like binary relevance(BR), binary pairwise classification (PW).
Journal of the Korea Society of Computer and Information
/
v.21
no.8
/
pp.65-75
/
2016
In this paper, we present a novel approach to help MSR researchers obtain necessary data with a tool, termed General Purpose Extractor for Source code (GPES). GPES has a single function extracts high-quality data, e.g., the version history, abstract syntax tree (AST), changed code diff, and software quality metrics. Moreover, features such as an AST of other languages or new software metrics can be extended easily given that GPES has a flexible data model and a component-based design. We conducted several case studies to evaluate the usefulness and effectiveness of our tool. Case studies show that researchers can reduce the overall cost of data analysis by transforming the data into the required formats.
Annual Conference on Human and Language Technology
/
2004.10d
/
pp.5-11
/
2004
일반적으로 HTML문서는 크게 내용과 구조로 이루어져 있다. HTML은 일반 문서와 달리 태그라는 것으로 문서에 추가 정보를 주며, 문서의 내용을 더욱 명확하게 한다. 따라서 태그를 이용하면 일반 문서보다 정보를 쉽게 구별하고 추출할 수 있다. 이러한 여러 가지 태그들 중에서 본 연구는 표를 중점적으로 연구한다. 표는 행과 열을 이용하여 어떤 사실을 조직하여 전달하는 것으로, 다른 구조적 특성들 보다 정보를 조직하는데 매우 유용하며, 글로 기술할 많은 분량을 간단히 줄이는 역할을 한다. 이와 같은 표의 특성에 주목하여 표에서 정보를 추출하는 분야를 기존 연구자들은 Web Table Mining 명명하였다. 본 연구는 기존 연구자들이 간과한 표의 구조적인 특성을 이용하여 전체 인터넷 문서에 적용할 수 있는 방법과 함께, 표에서 의미 있는 정보 추출을 위한 단계적인 모형을 제시한다.
Proceedings of the Korean Institute of Building Construction Conference
/
2009.11a
/
pp.253-256
/
2009
To the success of the megaproject including various and complex facilities, it is needed to establish a database system. Developments in data collection, storage and extracting technology have enabled iPMIS to manage various and complex information about cost and time. Especially, when we consider that both the go and no go decision in feasibility, Cost is an important and clear criteria in megaproject. Thus, Cost data modeling is the basis of the system and is necessary process. This research is focus on the structure and definition about CBS data which is collected from sites. We used four tools which are Function Analysis in VE, Casual loop Diagram in System Dynamics, Decision Tree in Data-mining, and Normalization in SQL to identify its cause and effect relationship on CBS data. Cost data modeling provide iPMIS with helpful guideline.
XML 트리 데이터들로부터 빈번 서브 트리들을 추출하는 기존 방법들은 복잡하고 다수의 입력데이터 스캐닝을 필요로 할 뿐만 아니라 빈번 서브 트리를 구하기 위해 에지 하나하나의 조인 작업을 필요로 하였다. 이는 결과적으로 많은 수행 시간을 요한다. 본 논문에서는 트리데이터를 레벨 별로 나누고 이를 마치 채로 거르듯이 필터링하여 특정 수치 이상의 출현 횟수를 가지는 노드들만을 남겨 빠르게 빈번한 서브 트리를 찾고, 이를 이용하여 XML 연관규칙들을 생성하는 방법을 제시한다. 제시된 방법을 위해서 PairSet 이라는 새로운 자료구조를 도입하였으며, 이를 이용하는 크로스필터링 알고리즘을 개발하여 제시하였다.
DNA 의 염기서열 탐색을 위한 유전체학의 다음 세대인 구조유전체학은 유전체 사업으로 인한 인간 게놈지도의 완성과 축적된 생물정보를 이용한 생물정보학의 발달과 함께 급속한 성장을 계속하고 있다. 포스트 게놈 시대를 맞이하여 생명현상에 대한 궁극적인 이해를 위한 노력으로 단백질의 구조와 기능에 대한 연구가 주목을 받게 되었다. 다양한 구조 규명을 위한 도구들과 단백질 정보를 관리하기 위한 데이터베이스 구축에 따른 관련 기술의 발전은, 앞으로 다가올 생물정보의 방대함을 감안할 때, 가치 있는 지식정보를 얻기 위한 데이터 마이닝 기법들을 통해서만 가능하다. 본 논문은 데이터 마이닝의 근간 기술인 연관규칙 마이닝을 응용한 효율적인 서열 연관 규칙 알고리즘을 제안하며, 단백질 구조의 예측을 위한 단백질 서열 및 DNA 서열간의 패턴 비교 및 연관성을 목적으로 한다. 또한, 공간적 시간적 복잡성을 CMS-tree 라는 자료구조를 통해 알고리즘의 확장성 및 병렬화의 기본 알고리즘으로 사용하도록 개발하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.10-12
/
2002
최근에 많은 새로운 타입의 어플리케이션에서 정보 시스템들에 대한 사용의 증가로 인해 연속 질의들은 여러 연구 프로젝트들에서 초점이 되고 있으며 연구가 활발히 진행되고 있다. 특히 시계열에 대해서 미래의 값에 대한 예측 모델과 FFT(Fast Fourier Transform)을 이용하여 새로운 값이 입력될 때마다 신속하게 응답할 수 있는 이웃에 관한 연속 질의에 대해 이미 연구되었다. 그러나 이것은 이웃에 관한 질의이며 또한 방대한 데이터를 처리함에 있어서 매우 효율적이지 못하다. 이 논문에서는 시계열에 있어서 예측 모델을 이용하여 미래의 값을 예측한다. 다음 DFT(Discrete Fourier Transform)을 이용하여 변환한 후 R*-tree를 구성하고, 새로운 값이 입력될 때마다 신속하게 유사성 시계열들을 찾아서 응답하는 연속 범위 질의 과정과 시스템 구조에 대해 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.