• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.024 seconds

A Study on the Prediction Model for Sales of Women's Golfwear with Data Mining: Focus on Macroeconomic Factors and Consumer Sales Price (데이터마이닝을 적용한 여성 골프웨어 판매 예측 모델 연구: 거시경제요인과 소비자판매가격을 중심으로)

  • Han, Ki-Hyang
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.445-456
    • /
    • 2021
  • The purpose of this study is to identify the importance of variables affecting women's golf wear sales with macroeconomic variables and consumer selling prices that affect consumers' purchasing behavior, and to propose a price strategy to increase sales of golf wear. Data of domestic women's golf wear brands were analyzed using decision tree algorithms and ensemble. Consumer selling price is the most significant factors in terms of sales volume for T-shirt, pants and knit, while categories were found to be the most important factors in addition to consumer sales prices for skirt and one piece dress. These findings suggest that items have different economic variables that affect consumers' purchasing behavior, suggesting that sales and profits can be maximized through appropriate price strategies.

Dynamic Subspace Clustering for Online Data Streams (온라인 데이터 스트림에서의 동적 부분 공간 클러스터링 기법)

  • Park, Nam Hun
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.217-223
    • /
    • 2022
  • Subspace clustering for online data streams requires a large amount of memory resources as all subsets of data dimensions must be examined. In order to track the continuous change of clusters for a data stream in a finite memory space, in this paper, we propose a grid-based subspace clustering algorithm that effectively uses memory resources. Given an n-dimensional data stream, the distribution information of data items in data space is monitored by a grid-cell list. When the frequency of data items in the grid-cell list of the first level is high and it becomes a unit grid-cell, the grid-cell list of the next level is created as a child node in order to find clusters of all possible subspaces from the grid-cell. In this way, a maximum n-level grid-cell subspace tree is constructed, and a k-dimensional subspace cluster can be found at the kth level of the subspace grid-cell tree. Through experiments, it was confirmed that the proposed method uses computing resources more efficiently by expanding only the dense space while maintaining the same accuracy as the existing method.

The guideline for choosing the right-size of tree for boosting algorithm (부스팅 트리에서 적정 트리사이즈의 선택에 관한 연구)

  • Kim, Ah-Hyoun;Kim, Ji-Hyun;Kim, Hyun-Joong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.949-959
    • /
    • 2012
  • This article is to find the right size of decision trees that performs better for boosting algorithm. First we defined the tree size D as the depth of a decision tree. Then we compared the performance of boosting algorithm with different tree sizes in the experiment. Although it is an usual practice to set the tree size in boosting algorithm to be small, we figured out that the choice of D has a significant influence on the performance of boosting algorithm. Furthermore, we found out that the tree size D need to be sufficiently large for some dataset. The experiment result shows that there exists an optimal D for each dataset and choosing the right size D is important in improving the performance of boosting. We also tried to find the model for estimating the right size D suitable for boosting algorithm, using variables that can explain the nature of a given dataset. The suggested model reveals that the optimal tree size D for a given dataset can be estimated by the error rate of stump tree, the number of classes, the depth of a single tree, and the gini impurity.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

WebPR : A Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (WebPR :빈발 순회패턴 탐사에 기반한 동적 웹페이지 추천 알고리즘)

  • Yoon, Sun-Hee;Kim, Sam-Keun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.187-198
    • /
    • 2004
  • The World-Wide Web is the largest distributed Information space and has grown to encompass diverse information resources. However, although Web is growing exponentially, the individual's capacity to read and digest contents is essentially fixed. From the view point of Web users, they can be confused by explosion of Web information, by constantly changing Web environments, and by lack of understanding needs of Web users. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and Information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent k-Pagesets. We develop a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. Our algorithms provide Web users with new page views, which Include pagesets to recommend, so that users can effectively traverse its Web site. The main distinguishing factors are both a point consistently spanning schemes applying inter-pages association for mining frequent traversal patterns and a point proposing the most efficient tree model. Our experimentation with two real data sets, including Lady Asiana and KBS media server site, clearly validates that our method outperforms conventional methods.

Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences (생물학적 데이터 서열들에서 빈번한 최대길이 연속 서열 마이닝)

  • Kang, Tae-Ho;Yoo, Jae-Soo
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Biological sequences such as DNA sequences and amino acid sequences typically contain a large number of items. They have contiguous sequences that ordinarily consist of hundreds of frequent items. In biological sequences analysis(BSA), a frequent contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological dataset with long frequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous sequences in large biological data sequences by constructing the spanning tree with the fixed length. To verify the superiority of the proposed method, we perform experiments in various environments. As the result, the experiments show that the proposed method is much more efficient than MacosVSpan in terms of retrieval performance.

A Study on the Crash Severity of Expressway Work Zones Using Decision Tree (의사결정나무를 이용한 고속도로 공사구간 사고 심각도에 관한 연구)

  • PARK, Yong Woo;BACK, Sehum;PARK, Shin Hyoung;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.535-547
    • /
    • 2016
  • This study aims to identify factors that affect the degree of injury severity sustained in traffic crashes on work zone of Korean expressways. To this end, decision tree method was applied to identify influential factors on injury severity and compare characteristics of those factors between work zone and non-work zone. The results from the comparison show that the risk of severity was low when traffic volume and heavy vehicle ratio are high because the factors lower the overall section speed. On the other hand, when the traffic volume and the heavy vehicle ratio are low, the section speed increased and the tendency for high injury severity was confirmed. These findings are expected to help transportation planners and engineers understand which risk factors contribute more to severe injury in the work zones such that they can effectively prepare and implement safety countermeasures.

Multivariate quantile regression tree (다변량 분위수 회귀나무 모형에 대한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Bang, Sungwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.533-545
    • /
    • 2017
  • Quantile regression models provide a variety of useful statistical information by estimating the conditional quantile function of the response variable. However, the traditional linear quantile regression model can lead to the distorted and incorrect results when analysing real data having a nonlinear relationship between the explanatory variables and the response variables. Furthermore, as the complexity of the data increases, it is required to analyse multiple response variables simultaneously with more sophisticated interpretations. For such reasons, we propose a multivariate quantile regression tree model. In this paper, a new split variable selection algorithm is suggested for a multivariate regression tree model. This algorithm can select the split variable more accurately than the previous method without significant selection bias. We investigate the performance of our proposed method with both simulation and real data studies.

Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers (전자건강기록 데이터 기반 욕창 발생 예측모델의 개발 및 평가)

  • Park, Seul Ki;Park, Hyeoun-Ae;Hwang, Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.5
    • /
    • pp.575-585
    • /
    • 2019
  • Purpose: The purpose of this study was to develop predictive models for pressure ulcer incidence using electronic health record (EHR) data and to compare their predictive validity performance indicators with that of the Braden Scale used in the study hospital. Methods: A retrospective case-control study was conducted in a tertiary teaching hospital in Korea. Data of 202 pressure ulcer patients and 14,705 non-pressure ulcer patients admitted between January 2015 and May 2016 were extracted from the EHRs. Three predictive models for pressure ulcer incidence were developed using logistic regression, Cox proportional hazards regression, and decision tree modeling. The predictive validity performance indicators of the three models were compared with those of the Braden Scale. Results: The logistic regression model was most efficient with a high area under the receiver operating characteristics curve (AUC) estimate of 0.97, followed by the decision tree model (AUC 0.95), Cox proportional hazards regression model (AUC 0.95), and the Braden Scale (AUC 0.82). Decreased mobility was the most significant factor in the logistic regression and Cox proportional hazards models, and the endotracheal tube was the most important factor in the decision tree model. Conclusion: Predictive validity performance indicators of the Braden Scale were lower than those of the logistic regression, Cox proportional hazards regression, and decision tree models. The models developed in this study can be used to develop a clinical decision support system that automatically assesses risk for pressure ulcers to aid nurses.

Deriving rules for identifying diabetic among individuals with metabolic syndrome (대사증후군 환자 가운데 당뇨환자를 찾기 위한 규칙 도출)

  • Choi, Jinwook;Suh, Yongmoo
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.363-372
    • /
    • 2018
  • The objective of this study is to derive specific classification rules that could be used to prevent individuals with Metabolic Syndrome (MS) from developing diabetes. Specifically, we aim to identify rules which classify individuals with MS into those without diabetes (class 0) and those with diabetes (class 1). In this study we collected data from Korean National Health and Nutrition Examination Survey and built a decision tree after data pre-processing. The decision tree brings about five useful rules and their average classification accuracy is quite high (75.8%). In addition, the decision tree showed that high blood pressure and waist circumference are the most influential factors on the classification of the two groups. Our research results will serve as good guidelines for clinicians to provide better treatment for patients with MS, such that they do not develop diabetes.