Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.27-28
/
2020
이형 데이터 간의 정보 전송과 교환을 가능하게 하는 유연한 트리 구조의 특성은 인터넷 및 IoT 환경에서의 대량 데이터 저장·전송·교환 등에 있어서 XML이나 JSON에서 주요하게 사용된다. 사용성에 있어서는 수월한 반면에, 감추어져 있는 가치있는 정보들을 트리 구조의 대량 데이터들로부터 찾아내는 것은 일반 단순 구조의 데이터에 비해서 훨씬 어려우며 복잡하고 난해한 문제들을 발생시킨다. 이는 트리가 갖는 계층 구조 때문이다. 본 논문에서는 계층 구조를 갖는 대량 트리 데이터들을 보다 단순한 리스트 구조로 변형한 후 해당 구조로부터 가장 자주 발생하는 유용한 정보들을 추출하는 방법을 제시한다.
The consequences of rapid industrial advancement, diversified types of business and unexpected industrial accidents have caused a lot of damage to many unspecified persons both in a human way and a material way Although various previous studies have been analyzed to prevent industrial accidents, these studies only provide managerial and educational policies using frequency analysis and comparative analysis based on data from past industrial accidents. The main objective of this study is to find an optimal algorithm for data analysis of industrial accidents and this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. Enterprise Miner of SAS and AnswerTree of SPSS will be used to evaluate the validity of the results of the four algorithms. The sample for this work chosen from 19,574 data related to construction industries during three years ($2002\sim2004$) in Korea.
International Journal of Computer Science & Network Security
/
v.21
no.7
/
pp.350-358
/
2021
In modern years, the performance of the students is analysed with lot of difficulties, which is a very important problem in all the academic institutions. The main idea of this paper is to analyze and evaluate the academic performance of the college students with bipolar disorder by applying data mining classification algorithms using Jupiter Notebook, python tool. This tool has been generally used as a decision-making tool in terms of academic performance of the students. The various classifiers could be logistic regression, random forest classifier gini, random forest classifier entropy, decision tree classifier, K-Neighbours classifier, Ada Boost classifier, Extra Tree Classifier, GaussianNB, BernoulliNB are used. The results of such classification model deals with 13 measures like Accuracy, Precision, Recall, F1 Measure, Sensitivity, Specificity, R Squared, Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, TPR, TNR, FPR and FNR. Therefore, conclusion could be reached that the Decision Tree Classifier is better than that of different algorithms.
컴퓨터의 사용이 일반화됨에 따라 데이타를 생성하고 수집하는 것이 용이해졌다. 이에 따라 데이타로부터 자동적으로 유용한 지식을 얻는 기술이 필요하게 되었다. 데이타 마이닝에서 얻어진 지식은 정확성과 이해성을 충족해야 한다. 본 논문에서는 데이타 마이닝을 위하여 퍼지 결정트리에 기반한 효율적인 퍼지 규칙을 생성하는 알고리즘을 제안한다. 퍼지 결정트리는 ID3와 C4.5의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법이다. 특히, 퍼지 규칙은 속성 축에 평행하게 판단 경계선을 결정하는 방법으로는 어려운 속성 축에 평행하지 않는 경계선을 갖는 패턴을 효율적으로 분류한다. 제안된 알고리즘은 첫째, 각 속성 데이타의 히스토그램 분석을 통해 적절한 소속함수를 생성한다. 둘째, 주어진 소속함수를 바탕으로 ID3와 C4.5와 유사한 방법으로 퍼지 결정트리를 생성한다. 또한, 유전자 알고리즘을 이용하여 소속함수를 조율한다. IRIS 데이타, Wisconsin breast cancer 데이타, credit screening 데이타 등 벤치마크 데이타들에 대한 실험 결과 제안된 방법이 C4.5 방법을 포함한 다른 방법보다 성능과 규칙의 이해성에서 보다 효율적임을 보인다.Abstract With an extended use of computers, we can easily generate and collect data. There is a need to acquire useful knowledge from data automatically. In data mining the acquired knowledge needs to be both accurate and comprehensible. In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of non-axis-parallel decision boundaries, which are difficult to do using attribute-based classification methods.In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets including the IRIS data, the Wisconsin breast cancer data, and the credit screening data. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.
This study deals with the prediction of the total number of movie audiences as a measure for the box office. Prediction is performed by classification techniques of data mining such as decision tree, multilayer perceptron(MLP) neural network model, multinomial logit model, and support vector machine over time such as before movie release, release day, after release one week, and after release two weeks. Predictors used are: online word-of-mouth(OWOM) variables such as the portal movie rating, the number of the portal movie rater, and blog; in addition, other variables include showing the inherent properties of the film (such as nationality, grade, release month, release season, directors, actors, distributors, the number of audiences, and screens). When using 10-fold cross validation technique, the accuracy of the neural network model showed more than 90 % higher predictability before movie release. In addition, it can be seen that the accuracy of the prediction increases by adding estimates of the final OWOM variables as predictors.
We propose a weather-related service for fire risk assessment in order to increase fire safety awareness in everyday life. The proposed service offers a fire risk assessment level according to weather forecasts and a degree of fire risk according to fire factors under certain weather conditions. In order to estimate the fire risk, we produced a risk matrix through data mining with a decision tree using investigation data and weather data. Through the proposed service, residents can calculate the degree of fire risk under certain weather conditions using the fire factors around them. In addition, they can choose from various solutions to reduce fire risk. In order to demonstrate the feasibility of the proposed services, we developed a system that offers the services. Whenever weather forecasting is carried out by the Korea Meteorological Administration, the system produces the fire risk assessment levels for seven major cities and nine provinces of South Korea in an online process, as well as the fire risk according to fire factors for the weather conditions in each region.
Nowadays as video services grow rapidly, it is important for the service providers to provide customized services. Video ranking plays a key role for the service providers to attract the subscribers. In this paper we propose a weekly video ranking mechanism based on the quantified user engagement. The traditional QoE ranking mechanism is relatively subjective and usually is accomplished by grading, while QoS is relatively objective and is accomplished by analyzing the quality metrics. The goal of this paper is to establish a ranking mechanism which combines the both advantages of QoS and QoE according to the third-party data collection platform. We use data mining method to classify and analyze the collected data. In order to apply into the actual situation, we first group the videos and then use the regression tree and the decision tree (CART) to narrow down the number of them to a reasonable scale. After that we introduce the analytic hierarchy process (AHP) model and use Elo rating system to improve the fairness of our system. Questionnaire results verify that the proposed solution not only simplifies the computation but also increases the credibility of the system.
Generation and analysis methods have been proposed in recent years, such as using a natural language and formal language processing, artificial intelligence algorithms based knowledge model is effective meaning. its semantic based knowledge model has been used effective decision making tree and problem solving about specific context. and it was based on static generation and regression analysis, trend analysis with behavioral model, simulation support for macroeconomic forecasting mode on especially in a variety of complex systems and social network analysis. In this study, in this sense, integrating knowledge-based models, This paper propose a text mining derived from the inter-Topic model Integrated formal methods and Algorithms. First, a method for converting automatically knowledge map is derived from text mining keyword map and integrate it into the semantic knowledge model for this purpose. This paper propose an algorithm to derive a method of projecting a significant topic map from the map and the keyword semantically equivalent model. Integrated semantic-based knowledge model is available.
Journal of the Korean Data and Information Science Society
/
v.24
no.6
/
pp.1341-1348
/
2013
To solve the classification problems, various data mining techniques have been applied to database marketing, credit scoring and market forecasting. In this paper, we compare various techniques such as bagging, boosting, LASSO, random forest and support vector machine with the daily lens transaction data. The classical techniques-decision tree, logistic regression-are used too. The experiment shows that the random forest has a little smaller misclassification rate and standard error than those of other methods. The performance of the SVM is good in the sense of misclassfication rate and bad in the sense of standard error. Taking the model interpretation and computing time into consideration, we conclude that the LASSO gives the best result.
The most used tool for quality control is control chart in manufacturing industry. But it has limitations at current situation where most of manufacturing facilities are automated and several manufacturing processes have interdependent relationship such as CCM assembly line. To Solve problems, we propose quality management system based on data mining that are consisted of monitoring system where it monitors flows of processes at single window and feature extraction system where it predicts the yield of final product and identifies which processes have impact on the quality of final product. The quality management system uses decision tree, neural network, self-organizing map for data mining. We hope that the proposed system can help manufacturing process to produce stable quality of products and provides engineers useful information such as the predicted yield for current status, identification of causal processes for lots of abnormality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.