• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.028 seconds

Evaluation on Performance for Classification of Students Leaving Their Majors Using Data Mining Technique (데이터마이닝 기법을 이용한 전공이탈자 분류를 위한 성능평가)

  • Leem, Young-Moon;Ryu, Chang-Hyun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.293-297
    • /
    • 2006
  • Recently most universities are suffering from students leaving their majors. In order to make a countermeasure for reducing major separation rate, many universities are trying to find a proper solution. As a similar endeavor, this paper uses decision tree algorithm which is one of the data mining techniques which conduct grouping or prediction into several sub-groups from interested groups. This technique can analyze a feature of type on students leaving their majors. The dataset consists of 5,115 features through data selection from total data of 13,346 collected from a university in Kangwon-Do during seven years(2000.3.1 $\sim$ 2006.6.30). The main objective of this study is to evaluate performance of algorithms including CHAID, CART and C4.5 for classification of students leaving their majors with ROC Chart, Lift Chart and Gains Chart. Also, this study provides values about accuracy, sensitivity, specificity using classification table. According to the analysis result, CART showed the best performance for classification of students leaving their majors.

  • PDF

A Study on Customer Segmentation of the Home Study Company using Decision Tree (의사결정나무를 이용한 방문학습지사의 고객세분화에 관한 연구)

  • Seo Kwang-Kyu;Oh Yeun-Joo;Han Young-Kyu;Shim Hyun-Jeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.316-319
    • /
    • 2004
  • Due to keen competition among companies, companies have segmented customers and they are trying to offer specially targeted customer by means of the distinguished method. In accordance, data mining techniques are noted as the effective method that extracts useful information. This paper explores customer segmentation of the home study company using data mining. The purposes of this paper are especially competitor chum in the recent home study market, to understand the characteristics of the customer group who are expected chum in case competing companies do aggressive sales promotion. In addition, this paper aims to find the influential factors of their breakaway, and to prepare practical marketing strategy to keep the existing customers. The study of chum in the home study market is conducted and the model using decision tree to predict and select valuable customer. Finally, this paper presents how the results can be incorporated and measured as a part of an overall marketing campaign process.

  • PDF

A Basic Study on the Career Roadmap of University Students Using Data Mining (데이터마이닝을 이용한 대학생들의 취업 로드맵에 관한 기초 연구)

  • Kim Hyojung;Oh Saenae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.129-138
    • /
    • 2023
  • The purpose of this study is to explore factors that directly affect the employment of college graduates. To this end, employment data of graduates of private four-year university in Daegu metropolitan area and Gyeongsangbuk-do province were collected from 2019 to 2021, filtered data using a RapidMiner, and analyzed by applying a decision tree model. As a result of the study, long-term internship for more than 12 weeks, TOEIC score of 787.5 or higher was advantageous for employment, and if there was no TOEIC score, the graduation average score was 3.67 or higher, so the possibility of employment was high. Even if the TOEIC score was low, it was advantageous for employment if participating in the contest and continuous professor counseling, and even if the average graduation score was low, the possibility of employment was high if actively participating in the comparison program. This study can present a job education guide based on actual data to university management and use it to establish policies to support employment of college students.

Wine Quality Assessment Using a Decision Tree with the Features Recommended by the Sequential Forward Selection

  • Lee, Seunghan;Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • Nowadays wine is increasingly enjoyed by a wider range of consumers, and wine certification and quality assessment are key elements in supporting the wine industry to develop new technologies for both wine making and selling processes. There have been many attempts to construct a more methodical approach to the assessment of wines, but most of them rely on objective decision rather than subjective judgement. In this paper, we propose a data mining approach to predict human wine taste preferences that is based on easily available analytical tests at the certification step. We used sequential forward selection and decision tree for this purpose. Experiments with the wine quality dataset from the UC Irvine Machine Learning Repository demonstrate the accuracies of 76.7% and 78.7% for red and white wines respectively.

Environmental Predictors of Atopic Dermatitis in Children - Using Answer Tree Analysis - (아동 아토피 피부염을 예측하는 환경적 요인들 - 의사결정 나무분석의 적용 -)

  • Lee, Ju-Lie
    • Korean Journal of Child Studies
    • /
    • v.31 no.2
    • /
    • pp.183-195
    • /
    • 2010
  • This study sought to investigate the environmental predictors of atopic dermatitis in children. The participants were 1050 (age 3-5) children taken from data data from the Ministry for Health, Welfare and Family Affairs. A data mining decision tree model revealed that the factors of medical neglect, breakfast, attachment to mother, and mother's depression influenced atopic dermatitis in children. Our results revealed that in the factors considered above, medical neglect had the greatest influence upon atopic dermatitis in children.

A Post-Analysis of Decision Tree to Detect the Change of Customer Behavior on Internet Shopping Mall

  • Kim, Jae kyeong;Song, Hee-Seok;Kim, Tae-Sung
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.456-463
    • /
    • 2001
  • Understanding and adapting to changes of customer behavior in internet shopping mall is an important aspect to survive in continuously changing environment. This paper develops a methodology based on decision tree algorithms to detect changes of customer behavior automatically from customer profiles and sales data at different time snapshots. We first define three types of changes as emerging pattern, unexpected change and the added/perished rule. Then, it is developed similarity and difference measures for rule matching to detect all types of change. Finally, the degree of change is developed to evaluate the amount of change. A Korean internet shopping mall case is evaluated to represent the performance of our methodology. And practical business implications for this methodology are also provided.

  • PDF

Data Mining for Road Traffic Accident Type Classification (데이터 마이닝을 이용한 교통사고 심각도 분류분석)

  • 손소영;신형원
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.187-194
    • /
    • 1998
  • 본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도 변화에 영향력 있는 변수 선택을 위하여 독립성 검정을 위한 $x^2$ test와 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 Decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합한 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.

  • PDF

Data Mining for Road Traffic Accident Type Classification (데이터 마이닝을 이용한 교통사고 심각도 분류분석)

  • 손소영
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.373-381
    • /
    • 1998
  • 본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도변화에 영향력 있는 변수선택을 위하여 $X^2$ 독립성 검정과 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합합 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.

  • PDF

Study on the Application of Decision Trees for Personalization based on e-CRM (e-CRM에서 개인화 향상을 위한 의사결정나무 사용에 관한 연구)

  • 양정희;한서정
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.3
    • /
    • pp.107-119
    • /
    • 2003
  • Expectation and interest about e-CRM are rising for more efficient customer management in on-line including electronic commerce. The decision-making tree can be used usefully as the data mining technology for e-CRM. In this paper, the representative decision making techniques, CART, C4.5, CHAID analyzed the differences in personalization point of view with actuality customer data through an experiment. With these analysis data, it is proposed a new decision-making tree system that has big advantage in personalization techniques. Through new system, it can get following advantage. First, it can form superior model more qualitatively in personalization by adding individual's weight value. Second it can supply information personalized more to customer. Third, it can have high position about customer's loyalty than other site of similar types of business. Fourth, it can reduce expense that cost marketing and decision-making. Fifth, it becomes possible that know that customer through smooth communication with customer who use personalized service wants and make from goods or service's quality to more worth thing.

TFP-tree based Incremental Frequent Patterns mining Method for Handling Large Data Set (대용량 데이터를 처리하기 위한 TFP-tree 기반의 점진적 빈발 패턴 마이닝 기법)

  • Lee, Jong Bum;Piao, Minghao;Shin, Jin-ho;Ryu, Keun Ho
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.761-762
    • /
    • 2009
  • 이 논문에서는 점진적 마이닝 기법을 사용하여 대용량 전력 사용량 데이터로부터 빈발 패턴들을 찾아내고, 빈발 패턴들을 기반으로 하여 분류 작업을 효과적으로 완성하는데 목적을 두고 있다. 이를 위하여 본 논문에서는 TFP-tree를 기반으로 하는 점진적 빈발 패턴 마이닝 기법 및 분류 알고리즘에 대해서 설명한다.