• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.025 seconds

A Study on Development of A Web-Based Forecasting System of Industrial Accidents (웹 기반의 산업재해 예측시스템 개발에 관한 연구)

  • Leem, Young-Moon;Hwang, Young-Seob;Choi, Yo-Han
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.269-274
    • /
    • 2007
  • Ultimate goal of this research is to develop a web-based forecasting system of industrial accidents. As an initial step for the purpose of this study, this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. In addition, this paper presents the logical process for development of a forecasting system. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. The sample for this work was chosen from 10,536 data related to manufacturing industries during three years(2002$^{\sim}$2004) in korea.

  • PDF

CHAID Algorithm by Cube-based Proportional Sampling

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.39-50
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. CHAID(Chi-square Automatic Interaction Detector) uses the chi-squired statistic to determine splitting and is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose CHAID algorithm by cube-based proportional sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.

  • PDF

CHAID Algorithm by Cube-based Proportional Sampling

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.803-816
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. CHAID uses the chi-squired statistic to determine splitting and is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose CHAID algorithm by cube-based proportional sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.

  • PDF

Knowledge Extractions, Visualizations, and Inference from the big Data in Healthcare and Medical

  • Kim, Jin Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.400-405
    • /
    • 2013
  • The purpose of this study is to develop a composite platform for knowledge extractions, visualizations, and inference. Generally, the big data sets were frequently used in the healthcare and medical area. To help the knowledge managers/users working in the field, this study is focused on knowledge management (KM) based on Data Mining (DM), Knowledge Distribution Map (KDM), Decision Tree (DT), RDBMS, and SQL-inference. The proposed mechanism is composed of five key processes. Firstly, in Knowledge Parsing, it extracts logical rules from a big data set by using DM technology. Then it transforms the rules into RDB tables. Secondly, through Knowledge Maintenance, it refines and manages the knowledge to be ready for the computing of knowledge distributions. Thirdly, in Knowledge Distribution process, we can see the knowledge distributions by using the DT mechanism.Fourthly, in Knowledge Hierarchy, the platform shows the hierarchy of the knowledge. Finally, in Inference, it deduce the conclusions by using the given facts and data.This approach presents the advantages of diversity in knowledge representations and inference to improve the quality of computer-based medical diagnosis.

A Fuzzy Decision Tree for Data Mining (데이터 마이닝을 위한 퍼지 결정트리)

  • 이중근;민창우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.63-65
    • /
    • 1998
  • 사회 전 분야에서 데이터가 폭발적으로 증가함에 따라 데이터를 이해하고 분석하는 새로운 자동적이고 지능적인 데이터 분석 도구와 기술이 필요하게 되었다. KDD(Knowledge Discovery in Databases)는 이러한 필요로부터 데이터에서 유용하고 이해 가능한 지식을 추출하는 연구이다. 데이터 마이닝(Data Mining)은 KDD에서 가장 중요한 단계로 데이터로부터 지식을 추출하는 단계이다. 데이터 마이닝에서 생성된 지식은 좋은 분류율을 가져야하고 이해하기 쉬워야한다. 본 논문에서는 퍼지 결정트리(FDT : Fuzzy Decision Tree)에 기반한 효율적인 데이터 마이닝 알고리즘을 제안한다. FDT의 각 링크는 속성(attribute) 값을 갖는 퍼지 집합이며, EDT의 각 경로는 퍼지 규칙을 생성한다. 제안된 알고리즘은 ID3의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법으로 히스토그램에 이루어진다. 마지막으로 제안된 방법의 타당성을 검증하기 위해 표준적인 패턴 분류 벤치마크 데이터에 대한 실험 결과를 보인다.

  • PDF

Development of Traffic Accident Models in Seoul Considering Land Use Characteristics (토지이용특성을 고려한 서울시 교통사고 발생 모형 개발)

  • Lim, Samjin;Park, Juntae
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.30-49
    • /
    • 2013
  • In this research we developed a new traffic accident forecasting model on the basis of land use. A new traffic accident forecasting model by type was developed based on market segmentation and further introduction of variables that may reflect characteristics of various regions using Classification and Regression Tree Method. From the results of analysis, activities variables such as the registered population, commuters as well as road size, traffic accidents causing facilities being the subjects of activities were derived as variables explaining traffic accidents.

An Approach for Generating Story-Plot Using Association Analysis of Narrative Patterns (서사 패턴의 연관분석을 통한 이야기 장면 생성 방법)

  • Kim, Jung-Il;Lee, Eun-Joo
    • Journal of Information Technology Services
    • /
    • v.12 no.1
    • /
    • pp.247-257
    • /
    • 2013
  • A narrative structure is essential for a story generator to create a story plot. In digital storytelling system, a narrative structure can be generally designed as a tree or a graph, and the story generator in the digital storytelling system creates continuous story plots based on the narrative structure. When a narrative structure is designed with a tree or a graph, it is hard for the story generator to create various kinds of story-plots due to the inflexible nature of a tree or graph structure. It may result in degrading the quality of story-plots to provide similar story-plot to various kind of user. In this paper, we proposed an approach to create a story-plot based on association analysis of data mining to overcome the disadvantage. In detail, we defined a narrative structure which consists of narrative patterns, and then implemented a story generator which creates a story-plot using the proposed narrative structure. As a result, we confirmed that implemented story generator was able to create a story-plot according to understanding level of user in case study.

Comparison of Data Mining Classification Algorithms for Categorical Feature Variables (범주형 자료에 대한 데이터 마이닝 분류기법 성능 비교)

  • Sohn, So-Young;Shin, Hyung-Won
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.551-556
    • /
    • 1999
  • In this paper, we compare the performance of three data mining classification algorithms(neural network, decision tree, logistic regression) in consideration of various characteristics of categorical input and output data. $2^{4-1}$. 3 fractional factorial design is used to simulate the comparison situation where factors used are (1) the categorical ratio of input variables, (2) the complexity of functional relationship between the output and input variables, (3) the size of randomness in the relationship, (4) the categorical ratio of an output variable, and (5) the classification algorithm. Experimental study results indicate the following: decision tree performs better than the others when the relationship between output and input variables is simple while logistic regression is better when the other way is around; and neural network appears a better choice than the others when the randomness in the relationship is relatively large. We also use Taguchi design to improve the practicality of our study results by letting the relationship between the output and input variables as a noise factor. As a result, the classification accuracy of neural network and decision tree turns out to be higher than that of logistic regression, when the categorical proportion of the output variable is even.

  • PDF

Development of an Expert System for Prevention of Industrial Accidents in Manufacturing Industries (제조업에서의 산업재해 예방을 위한 전문가 시스템 개발)

  • Leem Young-Moon;Choi Yo-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.1
    • /
    • pp.53-64
    • /
    • 2006
  • Many researches and analyses have been focused on industrial accidents in order to predict and reduce them. As a similar endeavor, this paper is to develop an expert system for prevention of industrial accidents. Although various previous studies have been performed to prevent industrial accidents, these studies only provide managerial and educational policies using frequency analysis and comparative analysis based on data from past industrial accidents. As an initial step for the purpose of this study, this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. Enterprise Miner of SAS and Answer Tree of SPSS will be used to evaluate the validity of the results of the four algorithms. The sample for this work was chosen from 10,536 data related to manufacturing industries during three years$(2002\sim2004)$ in korea. The initial sample includes a range of different businesses including the construction and manufacturing industries, which are typically vulnerable to industrial accidents.

Environmental Consciousness Data Modeling by Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.529-538
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a riven large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF