• Title/Summary/Keyword: Tree mining

Search Result 566, Processing Time 0.029 seconds

Analysis of Korean Adolescents' Life Satisfaction based on Public Database and Data Mining Techniques: Emphasis on Decision Tree (공공 DB 데이터마이닝 기법을 활용한 국내 청소년 삶의 만족도 분석에 관한 실증연구: 의사결정나무 기법을 중심으로)

  • Jo, Hyun Jin;Ko, Geo Nu;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.297-309
    • /
    • 2020
  • This study focuses on the application of the data mining technique logistic regression analysis and decision tree analysis to the domestic public database called Korean Children Youth Panel Survey (KCYPS) to derive a series of important factors affecting the enhancement of life satisfaction of domestic youth. As a result, the general impact factors on life satisfaction for each grade were derived from logistic regression. Using decision tree analysis, we came to conclusions that those factors such as depression, overall grade satisfaction, household economic level, and school adaptation play crucial roles in affecting high school adolesscents' life satisfaction.

Predicting Discharge Rate of After-care patient using Hierarchy Analysis

  • Jung, Yong Gyu;Kim, Hee-Wan;Kang, Min Soo
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.38-42
    • /
    • 2016
  • In the growing data saturated world, the question of "whether data can be used" has shifted to "can it be utilized effectively?" More data is being generated and utilized than ever before. As the collection of data increases, data mining techniques also must become more and more accurate. Thus, to ensure this data is effectively utilized, the analysis of the data must be efficient. Interpretation of results from the analysis of the data set presented, have their own on the basis it is possible to obtain the desired data. In the data mining method a decision tree, clustering, there is such a relationship has not yet been fully developed algorithm actually still impact of various factors. In this experiment, the classification method of data mining techniques is used with easy decision tree. Also, it is used special technology of one R and J48 classification technique in the decision tree. After selecting a rule that a small error in the "one rule" in one R classification, to create one of the rules of the prediction data, it is simple and accurate classification algorithm. To create a rule for the prediction, we make up a frequency table of each prediction of the goal. This is then displayed by creating rules with one R, state-of-the-art, classification algorithm while creating a simple rule to be interpreted by the researcher. While the following can be correctly classified the pattern specified in the classification J48, using the concept of a simple decision tree information theory for configuring information theory. To compare the one R algorithm, it can be analyzed error rate and accuracy. One R and J48 are generally frequently used two classifications${\ldots}$

New Splitting Criteria for Classification Trees

  • Lee, Yung-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.885-894
    • /
    • 2001
  • Decision tree methods is the one of data mining techniques. Classification trees are used to predict a class label. When a tree grows, the conventional splitting criteria use the weighted average of the left and the right child nodes for measuring the node impurity. In this paper, new splitting criteria for classification trees are proposed which improve the interpretablity of trees comparing to the conventional methods. The criteria search only for interesting subsets of the data, as opposed to modeling all of the data equally well. As a result, the tree is very unbalanced but extremely interpretable.

  • PDF

Breast Cancer Diagnosis using Naive Bayes Analysis Techniques (Naive Bayes 분석기법을 이용한 유방암 진단)

  • Park, Na-Young;Kim, Jang-Il;Jung, Yong-Gyu
    • Journal of Service Research and Studies
    • /
    • v.3 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • Breast cancer is known as a disease that occurs in a lot of developed countries. However, in recent years, the incidence of Korea's modern woman is increased steadily. As well known, breast cancer usually occurs in women over 50. In the case of Korea, however, the incidence of 40s with young women is increased steadily than the West. Therefore, it is a very urgent task to build a manual to the accurate diagnosis of breast cancer in adult women in Korea. In this paper, we show how using data mining techniques to predict breast cancer. Data mining refers to the process of finding regular patterns or relationships among variables within the database. To this, sophisticated analysis using the model, you will find useful information that is easily revealed. In this paper, through experiments Deicion Tree Naive Bayes analysis techniques were compared using analysis techniques to diagnose breast cancer. Two algorithms was analyzed by applying C4.5 algorithm. Deicison Tree classification accuracy was fairly good. Naive Bayes classification method showed better accuracy compared to the Decision Tree method.

  • PDF

A Development of Suicidal Ideation Prediction Model and Decision Rules for the Elderly: Decision Tree Approach (의사결정나무 기법을 이용한 노인들의 자살생각 예측모형 및 의사결정 규칙 개발)

  • Kim, Deok Hyun;Yoo, Dong Hee;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.28 no.3
    • /
    • pp.249-276
    • /
    • 2019
  • Purpose The purpose of this study is to develop a prediction model and decision rules for the elderly's suicidal ideation based on the Korean Welfare Panel survey data. By utilizing this data, we obtained many decision rules to predict the elderly's suicide ideation. Design/methodology/approach This study used classification analysis to derive decision rules to predict on the basis of decision tree technique. Weka 3.8 is used as the data mining tool in this study. The decision tree algorithm uses J48, also known as C4.5. In addition, 66.6% of the total data was divided into learning data and verification data. We considered all possible variables based on previous studies in predicting suicidal ideation of the elderly. Finally, 99 variables including the target variable were used. Classification analysis was performed by introducing sampling technique through backward elimination and data balancing. Findings As a result, there were significant differences between the data sets. The selected data sets have different, various decision tree and several rules. Based on the decision tree method, we derived the rules for suicide prevention. The decision tree derives not only the rules for the suicidal ideation of the depressed group, but also the rules for the suicidal ideation of the non-depressed group. In addition, in developing the predictive model, the problem of over-fitting due to the data imbalance phenomenon was directly identified through the application of data balancing. We could conclude that it is necessary to balance the data on the target variables in order to perform the correct classification analysis without over-fitting. In addition, although data balancing is applied, it is shown that performance is not inferior in prediction rate when compared with a biased prediction model.

Parallel Data Mining with Distributed Frequent Pattern Trees (분산형 FP트리를 활용한 병렬 데이터 마이닝)

  • 조두산;김동승
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2561-2564
    • /
    • 2003
  • Data mining is an effective method of the discovery of useful information such as rules and previously unknown patterns existing in large databases. The discovery of association rules is an important data mining problem. We have developed a new parallel mining called Distributed Frequent Pattern Tree (abbreviated by DFPT) algorithm on a distributed shared nothing parallel system to detect association rules. DFPT algorithm is devised for parallel execution of the FP-growth algorithm. It needs only two full disk data scanning of the database by eliminating the need for generating the candidate items. We have achieved good workload balancing throughout the mining process by distributing the work equally to all processors. We implemented the algorithm on a PC cluster system, and observed that the algorithm outperformed the Improved Count Distribution scheme.

  • PDF

Implementation of Data Preparation System for Data Mining on Heterogenious Distributed Environment (이기종 분산환경에서 데이터마이닝을 위한 데이터준비 시스템 구현)

  • Lee sang hee;Lee won sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • This paper is to investigate the efficiency of the process of data preparation for existing data mining tools, and present a design principle for a new efficient data preparation system . We compare the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The compared data mining tools are Answer Tree, Clementine, Enterprise Miner, and Weka. We propose a design principle for an efficient system for data preparation for data mining on the distributed networks.

  • PDF

Data Mining Model Approach for The Risk Factor of BMI - By Medical Examination of Health Data -

  • Lee Jea-Young;Lee Yong-Won
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.217-227
    • /
    • 2005
  • The data mining is a new approach to extract useful information through effective analysis of huge data in numerous fields. We utilized this data mining technique to analyze medical record of 35,671 people. Whole data were assorted by BMI score and divided into two groups. We tried to find out BMI risk factor from overweight group by analyzing the raw data with data mining approach. The result extracted by C5.0 decision tree method showed that important risk factors for BMI score are triglyceride, gender, age and HDL cholesterol. Odds ratio of major risk factors were calculated to show individual effect of each factors.

Predicting stock price direction by using data mining methods : Emphasis on comparing single classifiers and ensemble classifiers

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.111-116
    • /
    • 2017
  • This paper proposes a data mining approach to predicting stock price direction. Stock market fluctuates due to many factors. Therefore, predicting stock price direction has become an important issue in the field of stock market analysis. However, in literature, there are few studies applying data mining approaches to predicting the stock price direction. To contribute to literature, this paper proposes comparing single classifiers and ensemble classifiers. Single classifiers include logistic regression, decision tree, neural network, and support vector machine. Ensemble classifiers we consider are adaboost, random forest, bagging, stacking, and vote. For the sake of experiments, we garnered dataset from Korea Stock Exchange (KRX) ranging from 2008 to 2015. Data mining experiments using WEKA revealed that random forest, one of ensemble classifiers, shows best results in terms of metrics such as AUC (area under the ROC curve) and accuracy.

An Implementation and Performance Characteristics of the FP-tree Association Rules Mining Algorithm (FP-tree 연관 규칙 탐사 알고리즘의 구현 및 성능 특성)

  • Lee, Hyung-Bong
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.337-340
    • /
    • 2006
  • FP-tree(Frequent Pattern Tree) 연관 규칙 탐사 알고리즘은 DB 스캔에 대한 부담을 획기적으로 절감시킴으로써 전체적인 성능을 향상시키고자 제안되었다. 그런데, FP-tree는 DB에 저장된 거래 내용중 빈발 항목을 포함하는 모든 거래를 트리에 저장해야 하기 때문에 그만큼 많은 메모리를 필요로 한다. 이 논문에서는 범용 운영체제인 유닉스 시스템을 사용해서 메모리 사용 측면에서 F.P. Tree 알고리즘의 타당성과 이에 따른 성능 특성을 관찰하였다. 그 결과, F.P. Tree 알고리즘은 현대 컴퓨터에서 보편화된 512MB${\sim}$1GB의 주메모리 시스템에서 무리는 없으나, 메모리 소요량이 DB의 크기나 빈발 항목 집합의 수 보다는 거래의 길이 등 DB의 특성에 따라 급격하게 증가하는 것으로 나타났다.

  • PDF