• Title/Summary/Keyword: Tree improvement

Search Result 576, Processing Time 0.027 seconds

Assessment of the Distribution of the Street Trees of Suwon City for Biodiversity

  • Choi, Sun A;Kim, Shin Won
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.49-57
    • /
    • 2014
  • This research is about analysis and evaluation of biodiversity of Suwon's street tree, then understanding the problem of it and finally finding a solution. Because the increasing damage of the street trees by disease and insects, insecticide is applied to prevent further damage. However, this insecticide is found to be cancer genic and causing hygienic threat to civilians. Therefore, by gathering Suwon's internal statistics about Suwon's street tree, the trees are divided into three categories, tall evergreen trees, deciduous trees, shrubs following Frank's 30-20-10 theory(1990). Also, according to species diversity index, the problem of disease and insect is researched in terms of biodiversity, and here we suggests solutions to counter such problems. According to the results, the trees planted in Suwon was found to be 31 families, 43 genus and 58 species. The most used kinds, almost 85% of the whole species, are found to be Rhododendron indicum (L.) Sweet, Buxus koreana Nakai ex Chung & al, Euonymus japonicus Thunb, Ligustrum obtusifolium Siebold & Zucc. Besides these, the rest of 15% of street trees had little variety. Therefore, it is necessary to plant tree variously and equally in terms of biodiversity. If this Frank's 10-20-30 solution is not enough to completely solve coulure problem, then further research will be done on soil properties, and local features for improvement of Suwon street tress.

Ethnobotany of Wild Baobab (Adansonia digitata L.): A Way Forward for Species Domestication and Conservation in Sudan

  • Gurashi, N.A.;Kordofani, M.A.Y.;Adam, Y.O.
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.270-280
    • /
    • 2017
  • Selection of superior phenotypes of fruit trees and products based on established criteria by local people is a prerequisite for future species domestication and conservation. Thus the study objective was to identify the local people's perceptions and preferences on baobab trees and products. A sample of 142 respondents was randomly selected using structured interviews in Blue Nile and North Kordofan, Sudan in 2013. Descriptive analysis was employed using SPSS and Excel programs. The study results indicated that local people use the morphological characteristics of the tree (leaves, fruits, seeds, kernels and bark) to differentiate individual trees. Based on the perceptions, local people recorded trees with delicious leaves, white pulp color, big fruit size and mature capsule size, and high pulp yield as criteria for differentiating between baobab trees in the study areas. In contrast, the undesirable traits were connected to trees with acidic pulp, slimy pulp, bitter leaves, and low pulp yield. The study concluded that the ethnobotanical knowledge of the baobab tree and its products may play an important role in tree domestication and improvement in Sudan. However, further research on tree genetics is needed to complement the ethnobotanical knowledge for baobab resources domestication and conservation.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF

Planting Plan for Improvement of Buffer Green Space Function in the Vicinity of Railroad in Seashore Reclaimed Land - A Case Study of Buffer Green Space, Ansan City - (해안 매립도시 완충녹지 조성현황과 기능향상을 위한 식재방안 - 안산시 완충녹지를 사례로 -)

  • Lee, Kyong-Jae;Han, Bong-Ho;Park, Hyun-Ae;Choi, Jin-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.691-706
    • /
    • 2008
  • This study analysed problems of railroadside buffer green space and suggested planting methods according to space function and planting concept in seashore reclaimed land, Ansan city. Planting density of railroadside buffer green zone of Ansan city was $0.04{\sim}0.17tree/m^2$, GVZ was $0.15{\sim}1.65m^3/m^2$ which is represented of deficiency of buffer function. In addition, soil hardness of mounded buffer green zone was $2.72{\sim}15kg/cm^2$. It was examined to have functions in terms of habitat for wildbirds and other organisms, surrounding landuse, urban greens, seasonality, landscape for function improvement of buffer green space. Functions of buffer green space were re-established as habitat for organism, buffer and landscape improvement, landscape and urban park, buffer zone and habitat. It was suggested to select Pinus thunbergii as a dominated species of planting method for buffer function and planting density in canopy and under-canopy layer was $0.4tree/m^2$, $0.5/m^2$ in shrub layer. In terms of landscape improvement function, Zelkova serrata, Prunus sargentii and Prunus armeniaca were selected as major species and it in canopy and under-canopy layer was $0.2tree/m^2$ and $0.5tree/m^2$ in shrub layer. In terms of habitat function Quercus acutissima, Prunus sargentii and Sorbus alnifolia were as major species and it in canopy layer was $0.06tree/m^2$, $0.1tree/m^2$ in under canopy layer, $0.8tree/m^2$ in shrub layer.

Acacia mangium Willd. - A Fast Growing Tree for Tropical Plantation

  • Hegde, Maheshwar;Palanisamy, K.;Yi, Jae Seon
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Acacia mangium is an evergreen fast-growing tropical tree, which can grow up to 30 m tall and 50 cm thick, under favorable conditions. It is a low-elevation species associated with rain forest margins and disturbed, well-drained acid soils. It is native to Papua, Western Irian Jaya and the Maluku islands in Indonesia, Papua New Guinea and north-eastern Queensland in Australia. Due to its rapid growth and tolerance of very poor soils, A. mangium was introduced into some Asian, African and western hemisphere countries where it is used as a plantation tree. A. mangium has good quality wood traits, such as a comparatively low proportion of parenchymatous cells and vessels, white and hard wood, and high calorific value. Therefore, it is useful for a variety of purposes, such as furniture, cabinets, turnery, floors, particleboard, plywood, veneer, fence posts, firewood, and charcoal. It is also being used in pulp and paper making because it has good pulp traits, with high yields of pulp, quality of kraft, and produces paper with good optical, physical and surface properties. Because there are significant provenance differences in growth rate, stem straightness, heartwood formation and frequency of multiple leaders, the productivity and quality also varies depending upon environmental conditions, so genetic improvement programmes have been undertaken in countries like Australia, India, Indonesia, Malaysia, the Philippines, Taiwan and Thailand. The programme includes provenance identifications and testing, plus tree selection and clonal multiplication, establishment of seed orchards and hybridization. The phenology, reproductive biology, fruit characteristics, silvicultural practices for cultivation, pest and diseases problems, production of improved planting stock, harvesting, wood properties and utilization have been discussed in this paper.

Case Study of CRM Application Using Improvement Method of Fuzzy Decision Tree Analysis (퍼지의사결정나무 개선방법을 이용한 CRM 적용 사례)

  • Yang, Seung-Jeong;Rhee, Jong-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.13-20
    • /
    • 2007
  • Decision tree is one of the most useful analysis methods for various data mining functions, including prediction, classification, etc, from massive data. Decision tree grows by splitting nodes, during which the purity increases. It is needed to stop splitting nodes when the purity does not increase effectively or new leaves does not contain meaningful number of records. Pruning is done if a branch does not show certain level of performance. By pruning, the structure of decision tree is changed and it is implied that the previous splitting of the parent node was not effective. It is also implied that the splitting of the ancestor nodes were not effective and the choices of attributes and criteria in splitting them were not successful. It should be noticed that new attributes or criteria might be selected to split such nodes for better tries. In this paper, we suggest a procedure to modify decision tree by Fuzzy theory and splitting as an integrated approach.

Variations in Growth Characteristics and Stress-wave Velocities of Zelkova serrata Trees from Eight Half-sib Families Planted in Three Different Initial Spacings

  • Prasetyo, Agung;Endo, Ryota;Takashima, Yuya;Aiso, Haruna;Hidayati, Fanny;Tanabe, Jun;Ishiguri, Futoshi;Iizuka, Kazuya;Yokota, Shinso
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.3
    • /
    • pp.235-240
    • /
    • 2015
  • Zelkova serrata is an important hardwood species for the timber industry in Japan. Tree breeding programs for this species have mainly focused on growth characteristics such as stem diameter (D), tree height (TH), stem form, and branching. In order to fulfill timber industry needs, wood quality improvement should be included in the tree breeding program of this species. In the present study, growth characteristics, such as D and TH, and the stress-wave velocity (SWV), which is highly correlated with Young's modulus of wood, were measured for 20-year-old Z. serrata from eight half-sib families planted in a progeny test site with three different initial spacings. Significant differences in all the measured characteristics were found among the eight half-sib families. The variance components of the half-sib families for D, TH, and SWV were 27.2%, 47.3%, and 33.5%, respectively. These results indicate that all the measured characteristics of this species could be improved by tree breeding programs. In addition, only low correlation coefficients were obtained between the growth characteristics and SWV, indicating that extensive selection on SWV in tree breeding programs may not always lead to a reduction in yield volume.

Study on the Hydraulic Characteristics Caused by Tree-Planting Conditions in a Natural Channel (하도내 식생상태가 수리학적 특성에 미치는 영향에 관한 연구)

  • Lee, Jeung-Seok;Ahn, Seung-Seop;Choi, Yun-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.319-327
    • /
    • 2000
  • In this study, the hydraulic characteristics variation of flood level caused by tree-planting condition in channel section is evaluated through the examination and analysis of back water characteristics in a natural channel within urban area where the improvement is completed. The study channel is Sinchun runs through the center of Taegu metropolitan city. For the analysis, the comparative examination of runoff characteristics depend on tree- planting condition performed for the flood level of the most upstream point, and velocity of study channel when the project flood flows according to three cases that existing channel is improved to the pro-natural channel, the roughness condition of both riverside highlands is changed, and the composition rate of trees in the riverside highlands is changed. It is known that the variation ranges of the flood level increase remarkably in general, and of the velocity decrease from the result of the examination for the hydraulic characteristics parameters at the most upstream point depend on the tree-planting condition of the channel section when the project flood flows. From the results of the above study on the variation of the hydraulic characteristics according to the tree-planting condition in channel section, it is known that the hydraulic characteristics when the project flood flows in channel have close relationship with the section properties and the slope of channel.

  • PDF

i-Tree Canopy-based Decision Support Method for Establishing Climate Change Adaptive Urban Forests (기후변화적응형 도시림 조성을 위한 i-Tree Canopy 기반 의사결정지원 방안)

  • Tae Han Kim;Jae Young Lee;Chang Gil Song;Ji Eun Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • The accelerated pace of climate crisis due to continuous industrialization and greenhouse gas emissions necessitates sustainable solutions that simultaneously address mitigation and adaptation to climate change. Naturebased Solutions (NbS) have gained prominence as viable approaches, with Green Infrastructure being a representative NbS. Green Infrastructure involves securing green spaces within urban areas, providing diverse climate adaptation functions such as removal of various air pollutants, carbon sequestration, and isolation. The proliferation of Green Infrastructure is influenced by the quantification of improvement effects related to various projects. To support decision-making by assessing the climate vulnerability of Green Infrastructure, the U.S. Department of Agriculture (USDA) has developed i-Tree Tools. This study proposes a comprehensive evaluation approach for climate change adaptation types by quantifying the climate adaptation performance of urban Green Infrastructure. Using i-Tree Canopy, the analysis focuses on five urban green spaces covering more than 30 hectares, considering the tree ratio relative to the total area. The evaluation encompasses aspects of thermal environment, aquatic environment, and atmospheric environment to assess the overall eco-friendliness in terms of climate change adaptation. The results indicate that an increase in the tree ratio correlates with improved eco-friendliness in terms of thermal, aquatic, and atmospheric environments. In particular, it is necessary to prioritize consideration of the water environment sector in order to realize climate change adaptive green infrastructure, such as increasing green space in urban areas, as it has been confirmed that four out of five target sites are specialized in improving the water environment.

  • PDF