• Title/Summary/Keyword: Tree disk

Search Result 105, Processing Time 0.03 seconds

Efficiently Managing the B-tree using Write Pattern Conversion on NAND Flash Memory (낸드 플래시 메모리 상에서 쓰기 패턴 변환을 통한 효율적인 B-트리 관리)

  • Park, Bong-Joo;Choi, Hae-Gi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.521-531
    • /
    • 2009
  • Flash memory has physical characteristics different from hard disk where two costs of a read and write operations differ each other and an overwrite on flash memory is impossible to be done. In order to solve these restrictions with software, storage systems equipped with flash memory deploy FTL(Flash Translation Layer) software. Several FTL algorithms have been suggested so far and most of them prefer sequential write pattern to random write pattern. In this paper, we provide a new technique to efficiently store and maintain the B-tree index on flash memory. The operations like inserts, deletes, updates of keys for the B-tree generate random writes rather than sequential writes on flash memory, leading to inefficiency to the B-tree maintenance. In our technique, we convert random writes generated by the B-tree into sequential writes and then store them to the write-buffer on flash memory. If the buffer is full later, some sequential writes in the buffer will be issued to FTL. Our diverse experimental results show that our technique outperforms the existing ones with respect to the I/O cost of flash memory.

Effect of Node Size on the Performance of the B+-tree on Flash Memory (플래시 메모리 상에서 B+-트리 노드 크기 증가에 따른 성능 평가)

  • Park, Dong-Joo;Choi, Hae-Gi
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.325-334
    • /
    • 2008
  • Flash memory is widely used as a storage medium for mobile devices such as cell phones, MP3 players, PDA's due to its tiny size, low power consumption and shock resistant characteristics. Additionally, some computer manufacturers try to replace hard-disk drives used in Laptops or personal computers with flash memory. More recently, there are some literatures on developing a flash memory-aware $B^+$-tree index for an efficient key-based search in the flash memory storage system. They focus on minimizing the number of "overwrites" resulting from inserting or deleting a sequence of key values to/from the $B^+$-tree. However, in addition to this factor, the size of a physical page allocated to a node can affect the maintenance cost of the $B^+$-tree. In this paper, with diverse experiments, we compare and analyze the costs of construction and search of the $B^+$-tree and the space requirement on flash memory as the node size increases. We also provide sorting-based or non-sorting-based algorithms to be used when inserting a key value into the node and suggest an header structure of the index node for searching a given key inside it efficiently.

Detecting Collisions in Graph-Driven Motion Synthesis for Crowd Simulation (군중 시뮬레이션을 위한 그래프기반 모션합성에서의 충돌감지)

  • Sung, Man-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.44-52
    • /
    • 2008
  • In this paper we consider detecting collisions between characters whose motion is specified by motion capture data. Since we are targeting on massive crowd simulation, we only consider rough collisions, modeling the characters as a disk in the floor plane. To provide efficient collision detection, we introduce a hierarchical bounding volume, the Motion Oriented Bounding Box tree (MOBB tree). A MOBBtree stores space-time bounds of a motion clip. In crowd animation tests, MOBB trees performance improvements ranging between two and an order of magnitude.

A Study on Parallel Spatial Index Structure (병렬처리 공간자료구조연구)

  • Bang, Kapsan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.775-776
    • /
    • 2009
  • 공간데이터를 관리하는 공간 index structure는 대부분 순차처리를 위한 구조를 가지고 있다. 많은 응용분야에서 방대한 양의 공간 데이터는 보조기억장치(예: disk)에 저장이 되어 사용이 되고 공간 index structure의 operation은 I/O에 대한 의존도가 크므로, I/O operation의 병렬처리는 공간 index structure의 질의반응시간을 현저하게 줄일 수 있다. 본 논문에서는 PPR-tree라는 병렬형 공간 index structure를 제안한다.

Similarity-Based Subsequence Search in Image Sequence Databases (이미지 시퀀스 데이터베이스에서의 유사성 기반 서브시퀀스 검색)

  • Kim, In-Bum;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.501-512
    • /
    • 2003
  • This paper proposes an indexing technique for fast retrieval of similar image subsequences using the multi-dimensional time warping distance. The time warping distance is a more suitable similarity measure than Lp distance in many applications where sequences may be of different lengths and/or different sampling rates. Our indexing scheme employs a disk-based suffix tree as an index structure and uses a lower-bound distance function to filter out dissimilar subsequences without false dismissals. It applies the normaliration for an easier control of relative weighting of feature dimensions and the discretization to compress the index tree. Experiments on medical and synthetic image sequences verify that the proposed method significantly outperforms the naive method and scales well in a large volume of image sequence databases.

Search scheme for parallel spatial index (병렬 공간 색인을 위한 검색 기법)

  • Seo, Young-Duk
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.2 s.14
    • /
    • pp.81-89
    • /
    • 2005
  • Declustering and parallel index structures are important research areas to improve a performance of databases. Previous researches proposed several distribution schemes for parallel R-trees, however there is no search schemes to be suitable for the index. In this paper, we propose schemes to improve the performance of range queries for distribute parallel indexes. The proposed schemes use the features that a parallel disk can read multiple nodes from various disks. The proposed schemes are verified using various implementations and performance evaluations. We propose new schemes which can read multiple nodes from multiple disks in contrast that to the previous schemes which can read a node from disk. The experimental evaluation shows that the proposed schemes give us the performance improvement by 40% from the previous researches.

  • PDF

Join Query Performance Optimization Based on Convergence Indexing Method (융합 인덱싱 방법에 의한 조인 쿼리 성능 최적화)

  • Zhao, Tianyi;Lee, Yong-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.109-116
    • /
    • 2021
  • Since RDF (Resource Description Framework) triples are modeled as graph, we cannot directly adopt existing solutions in relational databases and XML technology. In order to store, index, and query Linked Data more efficiently, we propose a convergence indexing method combined R*-tree and K-dimensional trees. This method uses a hybrid storage system based on HDD (Hard Disk Drive) and SSD (Solid State Drive) devices, and a separated filter and refinement index structure to filter unnecessary data and further refine the immediate result. We perform performance comparisons based on three standard join retrieval algorithms. The experimental results demonstrate that our method has achieved remarkable performance compared to other existing methods such as Quad and Darq.

An Efficient Index Buffer Management Scheme for a B+ tree on Flash Memory (플래시 메모리상에 B+트리를 위한 효율적인 색인 버퍼 관리 정책)

  • Lee, Hyun-Seob;Joo, Young-Do;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.719-726
    • /
    • 2007
  • Recently, NAND flash memory has been used for a storage device in various mobile computing devices such as MP3 players, mobile phones and laptops because of its shock-resistant, low-power consumption, and none-volatile properties. However, due to the very distinct characteristics of flash memory, disk based systems and applications may result in severe performance degradation when directly adopting them on flash memory storage systems. Especially, when a B-tree is constructed, intensive overwrite operations may be caused by record inserting, deleting, and its reorganizing, This could result in severe performance degradation on NAND flash memory. In this paper, we propose an efficient buffer management scheme, called IBSF, which eliminates redundant index units in the index buffer and then delays the time that the index buffer is filled up. Consequently, IBSF significantly reduces the number of write operations to a flash memory when constructing a B-tree. We also show that IBSF yields a better performance on a flash memory by comparing it to the related technique called BFTL through various experiments.

Hilbert Cube for Spatio-Temporal Data Warehouses (시공간 데이타웨어하우스를 위한 힐버트큐브)

  • 최원익;이석호
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2003
  • Recently, there have been various research efforts to develop strategies for accelerating OLAP operations on huge amounts of spatio-temporal data. Most of the work is based on multi-tree structures which consist of a single R-tree variant for spatial dimension and numerous B-trees for temporal dimension. The multi~tree based frameworks, however, are hardly applicable to spatio-temporal OLAP in practice, due mainly to high management cost and low query efficiency. To overcome the limitations of such multi-tree based frameworks, we propose a new approach called Hilbert Cube(H-Cube), which employs fractals in order to impose a total-order on cells. In addition, the H-Cube takes advantage of the traditional Prefix-sum approach to improve Query efficiency significantly. The H-Cube partitions an embedding space into a set of cells which are clustered on disk by Hilbert ordering, and then composes a cube by arranging the grid cells in a chronological order. The H-Cube refines cells adaptively to handle regional data skew, which may change its locations over time. The H-Cube is an adaptive, total-ordered and prefix-summed cube for spatio-temporal data warehouses. Our approach focuses on indexing dynamic point objects in static spatial dimensions. Through the extensive performance studies, we observed that The H-Cube consumed at most 20% of the space required by multi-tree based frameworks, and achieved higher query performance compared with multi-tree structures.

Study of Antimicrobial Activity of New Zealand's Tea Tree Essential Oil, Grapefruit Seed Extract and its major Component.

  • Han, Chang-Giu;Lee, Young-Woon;Zhoh, Choon-Koo;Kim, Byung-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.17-41
    • /
    • 1999
  • Manuka oil sometime named New Zealand's tea tree oil is soluble in oil and come from nature. The $\alpha$-pinene extracted from Manuka oil and R-limonene which is one of the component of extracted Citrex from Grapefruit were used to estimate the antimicrobial activity and to improve the capability of antiseptic. Disk diffusion and broth dilution methods were used to measure the antimicrobial activity. Escherichia coli which is gram-negative bacteria and Staphylococcus aureus which is gram-positive bacteria were used as strain. The antimicrobial activity of Manuka oil and $\alpha$-pinene for Escherichia coli, Staphylococcus aureus is similar when the concentration of Manuka oil and $\alpha$-pinene is $10{\mu}l$. However, Antimicrobial activity of Manuka oil for Escherichia coli, Staphylococcus aureus is better than that of $\alpha$-pinene when the concentration of Manuka oil and $\alpha$-pinene is low. Antimicrobial activity of Citrex is superior to that of R-limonene. The proper ratio of Maunka oil and Citrex can improve the antimicrobial activity. The proper ratio obtained from studies was 75% of Maunka oil and 25% Citrex for Escherichia coli, 25% of Maunka oil and 75% Citrex for Staphylococcus aureus.

  • PDF