• Title/Summary/Keyword: Tree Segmentation

Search Result 97, Processing Time 0.024 seconds

A Development of a Tailored Follow up Management Model Using the Data Mining Technique on Hypertension (데이터마이닝 기법을 활용한 맞춤형 고혈압 사후관리 모형 개발)

  • Park, Il-Su;Yong, Wang-Sik;Kim, Yu-Mi;Kang, Sung-Hong;Han, Jun-Tae
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.639-647
    • /
    • 2008
  • This study used the characteristics of the knowledge discovery and data mining algorithms to develop tailored hypertension follow up management model - hypertension care predictive model and hypertension care compliance segmentation model - for hypertension management using the Korea National Health Insurance Corporation database(the insureds’ screening and health care benefit data). This study validated the predictive power of data mining algorithms by comparing the performance of logistic regression, decision tree, and ensemble technique. On the basis of internal and external validation, it was found that the model performance of logistic regression method was the best among the above three techniques on hypertension care predictive model and hypertension care compliance segmentation model was developed by Decision tree analysis. This study produced several factors affecting the outbreak of hypertension using screening. It is considered to be a contributing factor towards the nation’s building of a Hypertension follow up Management System in the near future by bringing forth representative results on the rise and care of hypertension.

Analyzing Customer Purchase Behavior of a Department Store and Applying Customer Relationship Management Strategies (백화점 고객의 구매 분석 및 고객관계관리 전략 적용)

  • Ha Sung Ho;Baek Kyung Hoon
    • Korean Management Science Review
    • /
    • v.21 no.3
    • /
    • pp.55-69
    • /
    • 2004
  • This study analyzes customer buying-behavior patterns in a department store as time goes on, and predicts moving patterns of its customers. Through them, it suggests in this paper short-term and long-term marketing promotion strategies. RFM techniques are utilized for customer segmentation. Customers are clustered by using the Kohonen's Self Organizing Map as a method of data mining techniques. Then C5.0, a decision tree analysis technique, is used to predict moving patterns of customers. Using real world data, this study evaluates the prediction accuracy of predictive models.

Simple Recursive Approach for Detecting Spatial Clusters

  • Kim Jeongjin;Chung Younshik;Ma Sungjoon;Yang Tae Young
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.207-216
    • /
    • 2005
  • A binary segmentation procedure is a simple recursive approach to detect clusters and provide inferences for the study space when the shape of the clusters and the number of clusters are unknown. The procedure involves a sequence of nested hypothesis tests of a single cluster versus a pair of distinct clusters. The size and the shape of the clusters evolve as the procedure proceeds. The procedure allows for various growth clusters and for arbitrary baseline densities which govern the form of the hypothesis tests. A real tree data is used to highlight the procedure.

Analysis of Brokerage Commission Policy based on the Potential Customer Value (고객의 잠재가치에 기반한 증권사 수수료 정책 연구)

  • Shin, Hyung-Won;Sohn, So-Young
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.123-126
    • /
    • 2003
  • In this paper, we use three cluster algorithms (K-means, Self-Organizing Map, and Fuzzy K-means) to find proper graded stock market brokerage commission rates based on the cumulative transactions on both stock exchange market and HTS (Home Trading System). Stock trading investors for both modes are classified in terms of the total transaction as well as the corresponding mode of investment, respectively. Empirical analysis results indicated that fuzzy K-means cluster analysis is the best fit for the segmentation of customers of both transaction modes in terms of robustness. We then propose the rules for three grouping of customers based on decision tree and apply different brokerage commission to be 0.4%, 0.45%, and 0.5% for exchange market while 0.06%, 0.1%, 0.18% for HTS.

A Study on the Feature Extraction Using Spectral Indices from WorldView-2 Satellite Image (WorldView-2 위성영상의 분광지수를 이용한 개체 추출 연구)

  • Hyejin, Kim;Yongil, Kim;Byungkil, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.363-371
    • /
    • 2015
  • Feature extraction is one of the main goals in many remote sensing analyses. After high-resolution imagery became more available, it became possible to extract more detailed and specific features. Thus, considerable image segmentation algorithms have been developed, because traditional pixel-based analysis proved insufficient for high-resolution imagery due to its inability to handle the internal variability of complex scenes. However, the individual segmentation method, which simply uses color layers, is limited in its ability to extract various target features with different spectral and shape characteristics. Spectral indices can be used to support effective feature extraction by helping to identify abundant surface materials. This study aims to evaluate a feature extraction method based on a segmentation technique with spectral indices. We tested the extraction of diverse target features-such as buildings, vegetation, water, and shadows from eight band WorldView-2 satellite image using decision tree classification and used the result to draw the appropriate spectral indices for each specific feature extraction. From the results, We identified that spectral band ratios can be applied to distinguish feature classes simply and effectively.

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

Development of Traffic Accident Models in Seoul Considering Land Use Characteristics (토지이용특성을 고려한 서울시 교통사고 발생 모형 개발)

  • Lim, Samjin;Park, Juntae
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.30-49
    • /
    • 2013
  • In this research we developed a new traffic accident forecasting model on the basis of land use. A new traffic accident forecasting model by type was developed based on market segmentation and further introduction of variables that may reflect characteristics of various regions using Classification and Regression Tree Method. From the results of analysis, activities variables such as the registered population, commuters as well as road size, traffic accidents causing facilities being the subjects of activities were derived as variables explaining traffic accidents.

Color Image Retrieval using Quad-tree Segmentation Index (사분트리 분할 인덱스를 이용한 컬러이미지 검색)

  • 오석영;홍성용;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.175-177
    • /
    • 2004
  • 최근, 이미지 검색기법에서는 객체추출 방법이나 관심영역 추출방법에 관한 연구가 활발히 이루어지고 있다. 그러나, 컬러 이미지의 경우 색상을 고려한 관심영역 특징추출 방법이나 인덱스 기법은 많이 연구되지 못하고 있다. 따라서, 본 논문에서는 컬러 이미지의 색상을 기반으로 하는 사분트리 분할 인덱스 기법을 제안한다. 사분트리 분할 인덱스 구조는 컬러 이미지의 공간 영역을 계층적인 영역으로 분할하여 각 공간 영역의 평균 색상 갓을 데이터베이스에 저장한다 저장되어진 각 영역의 평균 색상은 검색의 효율성을 높이기 위해 사분트리 인스턴스(Quad-tree distance)를 퍼지 값으로 계산하여 인덱스를 생성한다. 생성된 사분트리 분할 인덱스는 컬러 이미지의 관심영역(Region of Interest)의 색상을 검색할 때 유용하게 사용되며. 검색속도의 향상에 도움을 준다.

  • PDF

Geometry and Camera Recovery for Indoor Images using Homographies and Image Segmentation (Homography와 영상 분할을 미용한 실내 영상으로부터의 기하정보와 카메라 정보의 추출)

  • 박태준;권대현;오광만
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.143-146
    • /
    • 2000
  • 본 논문에서는 다수의 실내 영상으로부터 영상을 촬영한 카메라의 속성정보와 실내 환경에 대한 기하정보를 추출하는 방법을 제안한다. BSP-Tree를 이용하여 주어진 실영상을 각각의 부분 영역이 실제로도 평면 영역에 해당되도록 분할하였으며, 특징점 대응을 통해 각 분할된 영역의 영상간 대응을 찾고 이로부터 각 분할 영역의 homography를 계산하였다 또한 간단한 가정을 통해 계산된 homography로부터 각 분할영역에 대응된 평면의 방정식과 각 영상을 촬영한 카메라의 속성을 찾아낼 수 있믐을 보였다. 본 논문에서 제안한 방법은 현재 본 연구팀이 구현 중인 영상기반 모델링 시스템에서 핵심적인 기능을 수행하리라 기대된다.

  • PDF

Text segmentation using concept hierarchy tree (계층적 개념 트리를 이용한 문서 분할 기법)

  • 이병희;최익규;박승규;김인구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.166-168
    • /
    • 2003
  • 문서 분할 기법은 문서 내에 존재하는 다양한 주제들을 자동적으로 추출하는 기법이다. 이 분야의 연구는 크게 사전적 관계에 근거한 기법과 통계적 데이터에 근거한 기법으로 나누어져 연구되어 왔다. 사전적 관계에 의한 기법은 단어들의 사전적 의미와 관계에 근거한 기법이고 통계적 데이터에 의한 기법은 주로 단어들의 분포를 이용한 기법이다. 여기에는 몇가지 문제점이 있는데 사전적 관계에 근거한 경우에는 분산된 주제들을 통합하여 추출하기 어렵고. 통계적 데이터에 근거한 기법은 정확한 주제의 개수를 찾기 어렵다는 점이다. 본 논문에서는 계층적 개념 트리를 이용하여 보다 정확한 개수의 주제들을 찾아낼 수 있는 문서 분할 기법에 대해 소개 하고자 한다.

  • PDF