• Title/Summary/Keyword: Tree Compare

Search Result 406, Processing Time 0.027 seconds

A Comparative Study of Phishing Websites Classification Based on Classifier Ensembles

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

The Dynamic Split Policy of the KDB-Tree in Moving Objects Databases (이동 객체 데이타베이스에서 KDB-tree의 동적 분할 정책)

  • Lim Duk-Sung;Lee Chang-Heun;Hong Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.396-408
    • /
    • 2006
  • Moving object databases manage a large amount of past location data which are accumulated as the time goes. To retrieve fast the past location of moving objects, we need index structures which consider features of moving objects. The KDB-tree has a good performance in processing range queries. Although we use the KDB-tree as an index structure for moving object databases, there has an over-split problem in the spatial domain since the feature of moving object databases is to increase the time domain. Because the over-split problem reduces spatial regions in the MBR of nodes inverse proportion to the number of splits, there has a problem that the cost for processing spatial-temporal range queries is increased. In this paper, we propose the dynamic split strategy of the KDB-tree to process efficiently the spatial-temporal range queries. The dynamic split strategy uses the space priority splitting method for choosing the split domain, the recent time splitting policy for splitting a point page to maximize the space utilization, and the last division policy for splitting a region page. We compare the performance of proposed dynamic split strategy with the 3DR-tree, the MV3R-tree, and the KDB-tree. In our performance study for range queries, the number of node access in the MKDB-tree is average 30% less than compared index structures.

Object Classification Method Using Dynamic Random Forests and Genetic Optimization

  • Kim, Jae Hyup;Kim, Hun Ki;Jang, Kyung Hyun;Lee, Jong Min;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.79-89
    • /
    • 2016
  • In this paper, we proposed the object classification method using genetic and dynamic random forest consisting of optimal combination of unit tree. The random forest can ensure good generalization performance in combination of large amount of trees by assigning the randomization to the training samples and feature selection, etc. allocated to the decision tree as an ensemble classification model which combines with the unit decision tree based on the bagging. However, the random forest is composed of unit trees randomly, so it can show the excellent classification performance only when the sufficient amounts of trees are combined. There is no quantitative measurement method for the number of trees, and there is no choice but to repeat random tree structure continuously. The proposed algorithm is composed of random forest with a combination of optimal tree while maintaining the generalization performance of random forest. To achieve this, the problem of improving the classification performance was assigned to the optimization problem which found the optimal tree combination. For this end, the genetic algorithm methodology was applied. As a result of experiment, we had found out that the proposed algorithm could improve about 3~5% of classification performance in specific cases like common database and self infrared database compare with the existing random forest. In addition, we had shown that the optimal tree combination was decided at 55~60% level from the maximum trees.

High Utility Pattern Mining using a Prefix-Tree (Prefix-Tree를 이용한 높은 유틸리티 패턴 마이닝 기법)

  • Jeong, Byeong-Soo;Ahmed, Chowdhury Farhan;Lee, In-Gi;Yong, Hwan-Seong
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.341-351
    • /
    • 2009
  • Recently high utility pattern (HUP) mining is one of the most important research issuer in data mining since it can consider the different weight Haloes of items. However, existing mining algorithms suffer from the performance degradation because it cannot easily apply Apriori-principle for pattern mining. In this paper, we introduce new high utility pattern mining approach by using a prefix-tree as in FP-Growth algorithm. Our approach stores the weight value of each item into a node and utilizes them for pruning unnecessary patterns. We compare the performance characteristics of three different prefix-tree structures. By thorough experimentation, we also prove that our approach can give performance improvement to a degree.

On Efficient Processing of Multidimensional Temporal Aggregates In Temporal Databases (시간지원 데이타베이스에서 다차원 시간 집계 연산의 효율적인 처리 기법)

  • 강성탁;정연돈;김명호
    • Journal of KIISE:Databases
    • /
    • v.29 no.6
    • /
    • pp.429-440
    • /
    • 2002
  • Temporal databases manage time-evolving data. They provide built-in supports for efficient recording and querying of temporal data. The temporal aggregate in temporal databases is an extension of the conventional aggregate to include time concept on the domain and range of aggregation. This paper focuses on multidimensional temporal aggregation. In a multidimensional temporal aggregate, we use one or more general attributes as well as a time attribute on the range of aggregation, thus it is a useful operation for historical data warehouse, Call Data Records(CDR), etc. In this paper, we propose a structure for multidimensional temporal aggregation, called PTA-tree, and an aggregate processing method based on the PTA-tree. Through analyses and performance experiments, we also compare the PTA-tree with the simple extension of SB-tree that was proposed for temporal aggregation.

Customer Churning Forecasting and Strategic Implication in Online Auto Insurance using Decision Tree Algorithms (의사결정나무를 이용한 온라인 자동차 보험 고객 이탈 예측과 전략적 시사점)

  • Lim, Se-Hun;Hur, Yeon
    • Information Systems Review
    • /
    • v.8 no.3
    • /
    • pp.125-134
    • /
    • 2006
  • This article adopts a decision tree algorithm(C5.0) to predict customer churning in online auto insurance environment. Using a sample of on-line auto insurance customers contracts sold between 2003 and 2004, we test how decision tree-based model(C5.0) works on the prediction of customer churning. We compare the result of C5.0 with those of logistic regression model(LRM), multivariate discriminant analysis(MDA) model. The result shows C5.0 outperforms other models in the predictability. Based on the result, this study suggests a way of setting marketing strategy and of developing online auto insurance business.

A Study on Selection of Split Variable in Constructing Classification Tree (의사결정나무에서 분리 변수 선택에 관한 연구)

  • 정성석;김순영;임한필
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.347-357
    • /
    • 2004
  • It is very important to select a split variable in constructing the classification tree. The efficiency of a classification tree algorithm can be evaluated by the variable selection bias and the variable selection power. The C4.5 has largely biased variable selection due to the influence of many distinct values in variable selection and the QUEST has low variable selection power when a continuous predictor variable doesn't deviate from normal distribution. In this thesis, we propose the SRT algorithm which overcomes the drawback of the C4.5 and the QUEST. Simulations were performed to compare the SRT with the C4.5 and the QUEST. As a result, the SRT is characterized with low biased variable selection and robust variable selection power.

Gene Sequences Clustering for the Prediction of Functional Domain (기능 도메인 예측을 위한 유전자 서열 클러스터링)

  • Han Sang-Il;Lee Sung-Gun;Hou Bo-Kyeng;Byun Yoon-Sup;Hwang Kyu-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1044-1049
    • /
    • 2006
  • Multiple sequence alignment is a method to compare two or more DNA or protein sequences. Most of multiple sequence alignment tools rely on pairwise alignment and Smith-Waterman algorithm to generate an alignment hierarchy. Therefore, in the existing multiple alignment method as the number of sequences increases, the runtime increases exponentially. In order to remedy this problem, we adopted a parallel processing suffix tree algorithm that is able to search for common subsequences at one time without pairwise alignment. Also, the cross-matching subsequences triggering inexact-matching among the searched common subsequences might be produced. So, the cross-matching masking process was suggested in this paper. To identify the function of the clusters generated by suffix tree clustering, BLAST and CDD (Conserved Domain Database)search were combined with a clustering tool. Our clustering and annotating tool consists of constructing suffix tree, overlapping common subsequences, clustering gene sequences and annotating gene clusters by BLAST and CDD search. The system was successfully evaluated with 36 gene sequences in the pentose phosphate pathway, clustering 10 clusters, finding out representative common subsequences, and finally identifying functional domains by searching CDD database.

Shot Boundary Detection Using Global Decision Tree (전역적 결정트리를 이용한 샷 경계 검출)

  • Shin, Seong-Yoon;Moon, Hyung-Yoon;Rhee, Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • This paper proposes a method to detect scene change using global decision tree that extract boundary cut that have width of big change that happen by camera brake from difference value of frames. First, calculate frame difference value through regional X2-histogram and normalization, next, calculate distance between difference value using normalization. Shot boundary detection is performed by compare global threshold distance with distance value for two adjacent frames that calculating global threshold distance based on distance between calculated difference value. Global decision tree proposed this paper can detect easily sudden scene change such as motion from object or camera and flashlight.

  • PDF

Interpretability Comparison of Popular Decision Tree Algorithms (대표적인 의사결정나무 알고리즘의 해석력 비교)

  • Hong, Jung-Sik;Hwang, Geun-Seong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • Most of the open-source decision tree algorithms are based on three splitting criteria (Entropy, Gini Index, and Gain Ratio). Therefore, the advantages and disadvantages of these three popular algorithms need to be studied more thoroughly. Comparisons of the three algorithms were mainly performed with respect to the predictive performance. In this work, we conducted a comparative experiment on the splitting criteria of three decision trees, focusing on their interpretability. Depth, homogeneity, coverage, lift, and stability were used as indicators for measuring interpretability. To measure the stability of decision trees, we present a measure of the stability of the root node and the stability of the dominating rules based on a measure of the similarity of trees. Based on 10 data collected from UCI and Kaggle, we compare the interpretability of DT (Decision Tree) algorithms based on three splitting criteria. The results show that the GR (Gain Ratio) branch-based DT algorithm performs well in terms of lift and homogeneity, while the GINI (Gini Index) and ENT (Entropy) branch-based DT algorithms performs well in terms of coverage. With respect to stability, considering both the similarity of the dominating rule or the similarity of the root node, the DT algorithm according to the ENT splitting criterion shows the best results.