• Title/Summary/Keyword: Treatment Planning System

Search Result 601, Processing Time 0.03 seconds

Three-Dimensional Dose Distribution for the System of Linear Accelerator-based Stereotactic Radiosurgery (LINAC을 이용한 뇌정위적 방사선 수술에 대한 3 차원 선량분포)

  • Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1991
  • Radiosurgery treatment in the brain requires detailed information on three-dimensional dose distribution. A three-dimensional treatment planning is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. Three-dimensional dose models for non-coplanar moving arcs were developed using measured single beam data and efficient 3-D dose algorithms for circular fields. The implementation of three dimensional dose algorithms with stereotactic radiosurgery and the application of the algorithms to several cases are discussed.

  • PDF

Dosimetry and Three Dimensional Planning for Stereotactic Radiosurgery with SIEMENS 6-MV LINAC (6-MV선형가속기를 이용한 입체방사선수술의 선량측정 및 3차원적 치료계획)

  • Choi Dong-Rak;Cho Byong Chul;Suh Tae-Suk;Chung Su Mi;Choi Il Bong;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.175-181
    • /
    • 1993
  • Radiosurgery requires integral procedure where special devices and computer systems are needed for localization, dose planning and treatment. The aim of this work is to verify the overall mechanical accuracy of our LINAC and develop dose calculation algorithm for LINAC radiosurgery. The alignment of treatment machine and the performance testing of the entire system were extensively carried out and the basic data such as percent depth dose, off-axis ratio and output factor were measured. A three dimensional treatment planning system for stereotactic radiosurgery has been developed. We used an IBM personal computer with C programming language (IBM personal system/2, Model 80386, IBM Co., USA) for calculating the dose distribution. As a result, deviations at isocenter on gantry and table rotation for our treatment machine were acceptable since they were less than 2 mm. According to the phantom experiments, the focusing isocenter were successful by the error of less than 2 mm. Finally, the mechanical accuracy of our three dimensional planning system was confirmed by film dosimetry in sphere phantom.

  • PDF

Evaluation of Ovary Dose of Childbearing age Woman with Breast cancer in Radiation therapy (가임기 여성의 방사선 치료 시 난소 선량 평가)

  • Park, Sung Jun;Lee, Yeong Cheol;Kim, Seon Myeong;Kim, Young Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.145-153
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the ovarian dose during radiation therapy for breast cancer in women of childbearing age through an experiment. The ovarian dose is evaluated by comparing and analyzing between the calculated dose in the treatment planning system according to the treatment technique and the measured dose using a thermoluminescence dosimeter (TLD). The clinical usefulness of lead (Pb) apron is investigated through dose analysis according to whether or not it is used. Materials and Methods: Rando humanoid phantom was used for measurement, and wedge filter radiation therapy, 3D conformal radiation therapy, and intensity modulated radiation therapy were used as treatment techniques. A treatment plan was established so that 95% of the prescribed dose could be delivered to the right breast of the Rando humanoid phantom 3D image obtained using the CT simulator. TLD was inserted into the surface and depth of the virtual ovary of the Rando hunmanoid phantom and irradiated with radiation. The measurement location was the center of treatment and the point moved 2 cm to the opposite breast from the center of the Rando hunmanoid phantom, 5cm, 10cm, 12.5cm, 15cm, 17.5cm, 20cm from the boundary of the right breast to the center of treatment and downward, and the surface and depth of the right ovary. Measurements were made at a total of 9 central points. In the dose comparison of treatment planning systems, two wedge filter treatment techniques, three-dimensional conformal radiotherapy, and intensity-modulated radiation therapy were established and compared. Treatments were compared, and dose measurements according to the use of lead apron were compared and analyzed in intensity-modulated radiation therapy. The measured value was calculated by averaging three TLD values for each point and converting using the TLD calibration value, which was calculated as the point dose mean value. In order to compare the treatment plan value with the actual measured value, the absolute dose value was measured and compared at each point (%Diff). Results: At Point A, the center of treatment, a maximum of 201.7cGy was obtained in the treatment planning system, and a maximum of 200.6cGy was obtained in the TLD. In all treatment planning systems, 0cGy was calculated from Point G, which is a point 17.5cm downward from the breast interface. As a result of TLD, a maximum of 2.6cGy was obtained at Point G, and a maximum of 0.9cGy was obtained at Point J, which is the ovarian dose, and the absolute dose was 0.3%~1.3%. The difference in dose according to the use of lead aprons was from a maximum of 2.1cGy to a minimum of 0.1cGy, and the %Diff value was 0.1%~1.1%. Conclusion: In the treatment planning system, the difference in dose according to the three treatment plans did not show a significant difference from 0.85% to 2.45%. In the ovary, the difference between the Rando humanoid phantom's treatment planning system and the actual measured dose was within 0.9%, and the actual measured dose was slightly higher. This did not accurately reflect the effect of scattered radiation in the treatment planning system, and it is thought that the dose of scattered radiation and the dose taken by CBCT with TLD inserted were reflected in the actual measurement. In dosimetry according to the with or without a lead apron, when a lead apron was used, the closer the distance from the treatment range, the more effective the shielding was. Although it is not clinically appropriate for pregnancy or artificial insemination during radiotherapy, the dose irradiated to the ovaries during treatment is not expected to significantly affect the reproductive function of women of childbearing age after radiotherapy. However, since women of childbearing age have constant anxiety, it is thought that psychological stability can be promoted by presenting the data from this study.

Radiotherapy Treatment Planning in Head and Neck Cancer by CT-Reconstruction (CT 재구성에 의한 두경부 종양의 방사선 치료 계획)

  • Ryu, Sam-Uel;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.141-148
    • /
    • 1987
  • The ultimate goal of radiotherapy is to result in complete local control of tumor while sparing the surrounding normal tissues as much as possible. Since the development of CT in 1970s, patient's anatomical normal tissues and the site and extent of infiltration of tumor were identified almost accurately. In addition, the isodose distribution of delivered radiation to target tumor was shown in each cross-section. In the treatment planning of head and neck cancers, CT-reconstruction provided almost 3-dimensinonal inter-relationship between tumor and normal tissues. The utilization of imaging system of the CT scanner made it possible to illustrate in superposition the patient structure image, the radiation beams, and the isodose distributions. Thus it was possible to deliver radiation enough to control the local disease, and to avoid unnecessary administration of radiation to normal tissue such as spinal cord. CT-reconstructed image in axial, sagittal, and coronal planes suggested 3-dimensional radiotherapy treatment planning be possible and practical instead of conventional 2-dimensional planning at coronal plane.

  • PDF

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

Development Treatment Planning System Based on Monte-Carlo Simulation for Boron Neutron Capture Therapy

  • Kim, Moo-Sub;Kubo, Kazuki;Monzen, Hajime;Yoon, Do-Kun;Shin, Han-Back;Kim, Sunmi;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.232-235
    • /
    • 2016
  • The purpose of this study is to develop the treatment planning system (TPS) based on Monte-Carlo simulation for BNCT. In this paper, we will propose a method for dose estimation by Monte-Carlo simulation using the CT image, and will evaluate the accuracy of dose estimation of this TPS. The complicated geometry like a human body allows defining using the lattice function in MCNPX. The results of simulation such as flux or energy deposition averaged over a cell, can be obtained using the features of the tally provided by MCNPX. To assess the dose distribution and therapeutic effect, dose distribution was displayed on the CT image, and dose volume histogram (DVH) was employed in our developed system. The therapeutic effect can be efficiently evaluated by these evaluation tool. Our developed TPS could be effectively performed creating the voxel model from CT image, the estimation of each dose component, and evaluation of the BNCT plan.

Advanced Treatment Planning Method for Gamma Knife Radiosurgery of Cerebral Arteriovenous Malformations (뇌동정맥기형의 감마나이프 방사선 수술 -치료 계획 방법의 개선을 중심으로-)

  • Jang Geon-Ho;Lim Young Jin;Hong Seong Eon;Leem Won
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.87-94
    • /
    • 1995
  • Since March 1992, total 200 patients who visited our hospital as functional or organic lesions of central nervous system were treated by gamma knife stereotactic radiosurgery for 27 months. Thirty-nine patients of total cases was diagnosed as cerebral arteriovenous malformation. The rate of magnification on X-ray film was reduced by cutting fixation adaptor from 1.0 to below 1.45 times. In order to treat the deep- and lateral-seated cerebral arteriovenous malformation, we slightly modified the angiographic indicator, the commercial Leksell system, by cutting each inner sides about 5mm, We performed the more distinction of the scales by adapting 0.5mm or 1mm copper filter to angiographic indicator. The center point of indicator(X=100mm, Y=100mm, Z=100mm) is corrected by adjusting scales of X-, Y-, Z-axis to each inner 100 and outer 100 point within 1-2mm by repeated exposure of X-ray on films in trial-and-errors. We have developed the 'GKANGIO' programed as the Fortran-77 in Microvax - 3100, which can save treatment planning time and perform accurate pretreatment planning using the theoretical target metrix center. The theoretical description of the simplified method is presented for the reduction of experimental and numerical errors in treatment planning of radiosurgery.

  • PDF

The Effect of Volume Reduction on Computed Treatment Planning during Head and Neck IMRT and VMAT (두경부 IMRT 및 VMAT 시 체적 감소가 전산화치료계획에 미치는 영향)

  • Ki-Cheon Um;Gha-Jung Kim;Geum-Mun Back
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.239-246
    • /
    • 2023
  • In this study, we assessed the effect of reduction of tumor volume in the head and neck cancer by using RANDO phantom in Static Intensity-Modulated Radiation Therapy (S-IMRT) and Volumetric-Modulated Arc Therapy (VMAT) planning. RANDO phantom's body and protruding volumes were delineated by using Contour menu of Eclipse™ (Varian Medical System, Inc., Version 15.6, USA) treatment planning system. Inner margins of 2 mm to 10 mm from protruding volumes of the reference were applied to generate the parameters of reduced volume. In addition, target volume and Organ at Risk (OAR) volumes were delineated. S-IMRT plan and VMAT plan were designed in reference. These plans were assigned in the reduced volumes and dose was calculated in reduced volumes using preset Monitor unit (MU). Dose Volume Histogram (DVH) was generated to evaluate treatment planning. Conformity Index (CI) and R2 in reference S-IMRT were 0.983 and 0.015, respectively. There was no significant relationship between CI and the reduced volume. Homogeneity Index (HI) and R2 were 0.092 and 0.960, respectively. The HI increased when volume reduced. In reference VMAT, CI and R2 were 0.992 and 0.259, respectively. There was no relationship between the volume reduction and CI. On the other hand, HI and R2 were 0.078 and 0.895, respectively. The value of HI increased when the volume reduced. There was significant difference (p<0.05) between parameters (Dmean and Dmax) of normal organs of S-IMRT and VMAT except brain stem. Volume reduction affected the CI, HI and OAR dose. In the future, additional studies are necessary to incorporate the reduction of the volume in the clinical setting.

Architectural Planning Study on Spatial Composition of Mobile Seclusion Module - Based on Modular Construction System (이동형 안정실 모듈의 공간구성에 대한 건축계획적 연구 - 모듈러 건축 공법을 기반으로)

  • Kim, Sung Hyun;Yang, Nae-won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.2
    • /
    • pp.49-60
    • /
    • 2023
  • Purpose: This study aims to establish detailed spatial planning by identifying the needs for a seclusion module for emergency psychiatric patients. Methods: The necessity of medical space with seclusion function was analyzed from spatial, medical, and social perspectives. The needs for a space capable of performing three medical functions: protection, isolation, and treatment, was analyzed. Among various types of mobile medical facilities, seclusion space was considered suitable for utilizing modular construction methods, as it is the most rational method that can satisfy the environmental level of fixed healthcare facilities' space. Therefore, seclusion modules based on modular construction were planned, consisting of two protective units for stabilizing patients with psychiatric illness, one for treatment unit that can accommodate both internal and external treatment, and another one for an infectious disease isolation unit equipped with negative pressure equipment. Implications: This study analyzed the necessary medical functions of the interior space of the mobile stabilization module based on the spatial analysis of existing medical facilities, and proposed alternative spatial configurations according to treatment, seclusion, isolation functions.

A SYSTEMATIC IMPLANT TREATMENT PLANNING AND CONCEPTS FOR CLINICAL SUCCESS (체계적인 임플랜트 치료 계획의 수립과 성공적인 임상을 위한 컨셉트)

  • Jeong Seung-Mi;Kim Se-Hoon;Yoo Je-Hyeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.243-249
    • /
    • 2006
  • Statement of problem: It is important to have a correct presurgical treatment plan before any implant surgery. It must contain substantial information about the patient concerned. However, the standard classification only notifies the dentist about various structural, pathological and physiological dimensions Due to diverse structure of the jaw bone, current standard classification does not tell spatial dimensions of the available bone for implant insertion sites. Purpose of study: The purpose of this study is to report the establishment of the systematic implant treatment plan and its clinical treatment using $Implan^(R)$ program which is based on ASCIi-classification that is available for future diagnosis and scale of treatment and for systematic implant insertion. Results: By assisting the systemic measurement of the available alveolus dimension during implant surgery, it was easy to set initial implant treatment plan. Conclusion: Using $Implan^(R)$ program which is based on ASCIi-classification system that allows the establishment of systemic implant treatment plan and successful clinical performance, it was possible to establish the founding or initial implant treatment plan , the acquisition of information, and the systematization of documentation.