• 제목/요약/키워드: Treated wastewater

검색결과 593건 처리시간 0.028초

접촉산화법에 의한 소각로 배출폐액의 처리에 관한 연구 (A Study on the Treatment of Incinerator Wastewater with Biofilm Reactor)

  • 신대윤;서동우
    • 한국환경보건학회지
    • /
    • 제26권3호
    • /
    • pp.92-97
    • /
    • 2000
  • The treatment of the washout from small scale incinerator was performed physically, chemically and biologically. The results are as follows. 1. SS, FS removal efficiency of washout wastewater from incinerator was 67.4%, 37.4%, while SS, FS of sewage wastewater was removed 63.2% 35.4% respectively. 2. The optimal conditions for chemical coagulation turned out to be pH 7.5, alum(Al2O3 10%) 30ml/ι and polyelectrolyte(A-601P 0.1%) 4ml/ι. SS 86%, FS 89.5%, BOD 42.5% and CODMn, 63.5% was removed and the removal efficiency of some metals are shown as Pb 93.5%, Zn 86.5% and Fe 80.6%. The concentration of the effluent was SS 9mg/ι, BOD 98.4mg/ι, and CODMn 138.4mg/ι. 3. The removal efficiency in treating washout wastewater of incinerator through HBC-briquet media was getting higher with increasing HRT, and mixed wastewater with 1:1, 1:2 ratio could be met up to the standard limit with higher HRT than 12hr. Under the condition of 1:2 mix ratio and HRT 24 hr, removal efficiency of SS, BOD, CODMn, T-N and T-P was 92.1%, 90%, 87%, 48.2% and 48%, respectively, and the concentration of treated wastewater was SS 2.9 mg/ι, BOD 10.3mg/ι, CODMn 14.1mg/ι, T-N 11.6 mg/ι and T-P 1.3 mg/ι, respectively.

  • PDF

진동막분리장치에 의한 반도체폐수처리와 재이용에 관한 연구 (A Study on the Semiconductor Wastewater Treatment and Recycling by VSEP system)

  • 강경환
    • 한국환경과학회지
    • /
    • 제14권3호
    • /
    • pp.335-343
    • /
    • 2005
  • The objective of this research is to evaluate a feasibility of wastewater reuse by membrane treatment with vibrating membrane separation equipment. Molecular weight of compounds in wastewater, permeability of membrane and retentate characterization after membrane filtration were investigated in order to determine appropriate membrane pore size and materials for wastewater treatment. Selected membrane was evaluated with vibration membrane separation equipment to optimize operating conditions. The following conclusion are drawn. 1. We got as following test results after the distribution of particles in the semiconductor wastewater, are made up of $1\~20{\mu}m$. Si, gold and Al in turn are contained in semiconductor wastewater. 2. Recovery rate is changeless under increasing recovery rate in operation. Though a value can be if pressure can be changed, the highest value of permeate rate is presented in 150 psi. 3. The AS-100(polysulpone) was selected as the most appropriate membranes for the treatment of semi-conductor wastewater to VSEP system. The fouling almost did not occur during this experiments. The analyses of treated water with VSEP system showed conductivity: 0.059,us/cm, TDS: 40mg/l, COD: 20mg/l, SS : 5mg/l, n-Hexane: 8.3mg/l. Comparing previous systems, operating expenses is decreased by more $50\%$.

Estogenic and Dioxin-like Activity of Influent and Effluent of the Industrial Wastewater Treatment Plant

  • Oh, Seung-Min;Kim, Gi-Sur;Kim, Soung-Ho;Kim, Yun-Hee;Chung, Kyu-Hyuck
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2002년도 추계국제학술대회
    • /
    • pp.166-166
    • /
    • 2002
  • The response of environmental pollutants can be detected bioanalytically focusing on the source and matrices of concern. Cell culture bioassays are rapid and inexpensive, and thus have great potential for determination of environmental pollution. We have examined the estrogenic and dioxin-like activites of industrial wastewater using E-screen assay and EROD microbioassay. Influent and effluent wastewater were collected from four different industrial wastewater treatment plants, such as cosmetics, paints, textile producing and metal coating plant, and extracted using solid-phase extraction with Oasis@HLB plus cartridge. Pollutants adsorbed to the cartridge were eluted with MTBE. MCF-7 cells were treated with extracts showed various estrogenic potential. The textile wastewater showed strong estrogenic activity and the others showed weak estrogenic activity, No effect was observed in the wastewater from paints producing plant. All extracts showed CYPIA inducing effects, indicating these samples contain dioxin-like chemicals. Bioanalytical results of effluents compared with influents could give us information about the incomplete wastewater treatment and biological potency caused by pollutants. [Supported by a Grant from the Korea Science and Engineering Foundation]

  • PDF

옥천천 유역의 하천과 만곡부에서 조류 생장 잠재력 측정 (Algal Growth Potential Test (AGPT) in Streams and Embayment of the Okchon Stream Watershed, Korea)

  • 신재기;김동섭;이혜근;맹승진;황순진
    • ALGAE
    • /
    • 제18권2호
    • /
    • pp.169-176
    • /
    • 2003
  • Algal growth potential test (AGPT) bioassay were conducted to evaluate the stream and reservoir water in the Okchon Stream Watershed during May to September 2002. The water quality of the stream water was clean in the upstream, deteriorating toward the downstream. In particular, SRP and $NH_4$ significantly increased due to treated wastewater. The average AGPT value of the Okchon Stream watershed was 22.4 mg dw ${\cdot}l^{-1}$, with the range of 0- 195.7 mg dw ${\cdot}l^{-1}$. AGPT value was the highest immediately after inflow of treated wastewater, averaging 91.3 mg dw${\cdot}l^{-1}$. AGPT was highly correlated with SRP, $NH_4$ and TIN factors, with P having the greatest effect on the growth of algae. Among N components, $NH_4$ was preferred to $NO_3$ for the growth of algae. Likewise, AGPT was closely linked to meteological and hydrological effects and development of natural phytoplankton. In survey stations, mesotrophic, eutrophic and hypertrophic conditions accounted for 43%, 21% and 36%, respectively. On the other hand, hypertrophic condition focused on the downstream reaches. AGPT was useful in determining not only the limiting nutrients but also the water fertility for the growth of algae. Based on the AGPT results, the management of point sources for water pollution in treated wastewater was important in the protection of aquatic environment in the stream and embayment.

하수 2차 처리수 재이용을 위한 저압 및 중압 고도산화시스템의 성능평가 (Assessment of Advanced Oxidation Processes using Low and Medium-Pressure Lamps with H2O2 for Reclamation of Biologically Treated Wastewater Effluents)

  • 안규홍;안석;맹승규;김기팔;홍준석;정민우;권지향
    • 상하수도학회지
    • /
    • 제17권4호
    • /
    • pp.542-549
    • /
    • 2003
  • In the present study, the feasibility of $UV/H_2O_2$ systems was investigated using low and medium-pressure lamps on biologically treated wastewater effluents for secondary effluent reclamation. Two types of UV lamps were used as the light sources (a 39-W low-pressure mercury lamp and a 350-W medium-pressure mercury lamp). The results from these UV systems showed that the removal of organic compounds could be achieved in the contact time of longer than 30min (i.e., low UV doses). Efficiencies of color removal and disinfection were far better than those of organic matters measured as TOC, DOC and $TCOD_{cr}$. In the low-pressure lamp UV system, it has been found that DOC and color removals were 60.9 and 86.2% with 50mg/L of $H_2O_2$ and contact times of 30 minute, respectively. Whereas, with the medium-pressure lamp UV system, TOC, DOC and color removal were 27.1, 5.6 and 95% with 14.3mg/L of $H_2O_2$ and 14 minute of contact times, respectively. Both systems could be applied for the reclamation of secondary effluent treated with biological treatment processes.

직류전기를 이용한 하수슬러지 함수율 변화특성에 관한 연구 (A Study on Characteristics of Water Content Changes of Wastewater Sludge Using Direct Current Electricity)

  • 안정모;송지윤;주재영;배윤선;박철휘
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.609-615
    • /
    • 2010
  • This study examined the change of water content in sludge using direct current electric equipment for decreasing the amount of sludge. The experiment showed that the average density of solids in the sludge treated by direct current before the centrifugal dewatering process was increased by 47.8%, when compared to those not treated by direct current. From the result of measuring the granularity of the sludge by the direct current treatment, that the average particle size of the sludge that was not exposed to the electric current was 52.36 ${\mu}m$, and more than 90% of the sludge was <94.29 ${\mu}m$ in size. On the other hand, the average particle size of the sludge passed through the direct current was 28.67 ${\mu}m$, and more than 90% of the sludge was 52.46 ${\mu}m$. This means that the average particle size of the sludge treated by the direct current was 45.2% smaller, and the standard deviation of granularity was improved. Because of water that separated from sludge moves to the (+) pole, larger particles become smaller and fine particles combine together, resulting in the equalization of the particle size. On the sludge after the centrifugal dehydrator, the change of the water content by the direct current was measured. The results showed that the average density of the solids was increased by 44.2% compared.

고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리 (Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system)

  • 김중곤;정효기;손주영;김시욱
    • KSBB Journal
    • /
    • 제23권1호
    • /
    • pp.83-89
    • /
    • 2008
  • 음식물쓰레기를 처리하기 위한 3단계 메탄발효시스템으로부터 유출되는 음식물 발효 폐액은 고농도 유기성 폐수이다. 유기성 폐수는 고도처리 시스템에 의해 방류기준에 적합하게 처리되어져야만 한다. 본 연구에서는 유기성 폐수를 처리하기 위해 고효율 $UV/TiO_{2}$ 광촉매 산화공정의 최적 운전 조건을 조사하였다. 첫 번째 공정에서 폐수에 응집제인 $FeCl_{3}$를 전처리 하였으며, 응집을 위한 최적 pH와 응집제의 농도는 각각 pH 4와 2000 mg/L이었다. 이 공정을 통하여 최대 52.6%의 COD가 제거되었다. 두 번째는 $UV/TiO_{2}$ 광촉매 산화공정으로, 최적 운전 조건은 중심파장이 254 nm, 폐수 온도 및 pH가 각각 $40^{\circ}C$와 pH 8, 반응기 주입 공기량이 40 L/min인 것으로 조사되었다. 응집제를 이용한 전처리 공정과 광촉매 산화공정을 병합하여 최적조건에서 폐수를 처리할 경우 T-N과 COD의 제거율은 각각 69.7%와 70.9% 이었다.

제과공장의 폐수처리장에서 발생하는 악취 저감 (Reduction of the Offensive Odor from Confectionery Wastewater Plant)

  • 김영식;손병현;조상원;정종현
    • 한국환경보건학회지
    • /
    • 제24권1호
    • /
    • pp.62-69
    • /
    • 1998
  • It has been studied that the measurement of odor component emission at confectionery manufacture. The objects of this study were to investigate reduction of offensive odor. The survey effects of odorous materials are presented as follows. The countermeasure of operating process is to minimize sludge sediment in each unit facility. Especially, in summer, we have to clean the sludge frequently, because anaerobic decomposing is likely to occur easily. The sludge or scum from sedimentation tank pond, and floating tank should be treated quickly. We should avoid overloading operation. In the case of overloading, dissolved oxygen should be increased, the quality of wastewater input should be decreased. When dried cakes from condense tank or floating tank are left in treatment plant, we should cover, to prevent diffusion of smell with masking materials. The seasonal condition of operating should be fixed and the kind of coagulants should be changed because the wastewater in each season have different loading rates and organic materials. Odorous materials are very sensitive to the seasonal temperature variation. Especially, when the amount of rainfall is small and the high temperature of maintenance in long periods, air diffusion rate is large, so odorous materials can make great effect on surroundings comparision with other periods. To reduce odorous gas, as short term method, we had better take ceramic addition method. Especially, in summer we should take ceramic addition method. Also, as long term method, the size of wastewater treatment facility is the most important in the normal operating of wastewater treatment facility. But wastewater treatment facilities in this factory are too old, treatment process is old fashion, and the size is too small. So, large wastewater quantity to treat in summer. As results, the expansion of wastewater treatment facility and the process of improvement are required. Restriction level of odor was exceed. As it is overloaded in summer, the basis cause of odor is that the size of wastewater treatment facility is small. The prediction of air quality equilibrium density variation show that the odorous materials from working place are Amine materials whose smell strength is about 2.5(a little strong degree). We can suppose that in summer is sensitive to temperature variation, smell strength is larger as to reduce the origin of odor. We must expand wastewater treatment facility and improve the process A.S.A.P.

  • PDF

A state-of-the-art analysis of fresh, mechanical, durability and microstructural characterization of wastewater concrete

  • Nabil Ben Kahla;Ali Raza;Muhammad Arshad;Ahmed Babeker Elhag
    • Advances in concrete construction
    • /
    • 제17권2호
    • /
    • pp.93-110
    • /
    • 2024
  • The process of concrete production consumes an immense volume of water, with approximately one billion metric tons of freshwater being utilized for tasks such as aggregate washing, fresh concrete production, and concrete curing. The accessibility of clean water for the public is hindered by the limited availability of water resources, primarily due to the rapid expansion of industries such as tanneries, stone quarries, and concrete manufacturing. These industries not only consume substantial amounts of freshwater but also generate significant volumes of various types of waste. Therefore, the use of fresh water in concrete production should be minimized. Few studies have reviewed the production of concrete using wastewater to derive practical and applicable findings for the industry. Thus, this study thoroughly explores the physical and chemical effects of wastewater on concrete, examining aspects like durability, hardened properties, and rheological characteristics. It identifies key factors that can compromise concrete properties when exposed to wastewater. The scarcity of research on integrating wastewater into concrete production underscores the urgent necessity for innovative approaches and methodologies in this field. While the inclusion of wash water typically reduces the workability of fresh concrete, it often enhances its compressive strength. Notably, significant improvements have been observed when using tertiary processed wastewater, wash water, polyvinyl alcohol-based wash water (PVAW), and reclaimed water in the concrete mixing process. The application of tertiary treatment to wastewater resulted in a notable enhancement of compressive strength, showing increases of up to 7%. In contrast, wastewater treated through secondary methods experienced a decline in strength ranging from 9% to 18% over a period of six months. However, the use of reclaimed wastewater demonstrated an improvement in strength by 8% to 17%, depending on the concentration level ranging from 25% to 100%. In contrast, the utilization of secondary processed wastewater and industrial water has a minimal impact on the concrete's strength.