• Title/Summary/Keyword: Treated wastewater

Search Result 593, Processing Time 0.027 seconds

Sensitivity Analysis to the Design Factor of Ocean Outfall System (방류관 설계인자에 대한 민감도 분석)

  • 김지연;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.85.2-93
    • /
    • 2000
  • A demand of marine outfall system have been much increased for the effective disposal of the wastewater due to population and industrial development at the coastal areas. The outfall system discharges primary or secondary treated effluent into coastline or at the deep water, or between these two. The discharge is carried out by constructing a pipeline on the sea bed with a diffuser or with a tunnel, risers and appropriate. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. Thus there have been growing interests about plume behaviour around the outfall system. Plume or jet discharged from single-port or multi-port diffuser might cause certain impacts on coastal environment. Near field mixing characteristics of discharged water field using CORMIX model with has been studied for effective outfall design various conditions on ambient current, depth, flow rate, effluent concentration, diffuser specification, port specification etc.. This kind of analysis is necessary to deal with water quality problems caused by the ocean discharge. The analyzed vesult was applied to the Pusan Jungang dffluent outfall system plan.

  • PDF

Characteristics of Heavy Metals and Benthic Foraminifera on Surface Sediments in Masan Bay and Gadeog Channel, Korea (마산만과 가덕수로 표층퇴적물의 중금속 원소와 저서성 유공충 특성)

  • Woo, Han-Jun;Cho, Jin-Hyung;Choi, Jae-Ung
    • Ocean and Polar Research
    • /
    • v.29 no.3
    • /
    • pp.233-244
    • /
    • 2007
  • Nine surface sediments from Masan Bay and Gadeog Channel were taken for grain size and geochemical and foraminiferal analyses in August 2002. The sediments consist of mud with 7.29-8.54 $\phi$ in mean grain size. Average concentrations of Al, Fe and Mn are higher in Gadeog Channel than those in Masan Bay. On the other hand, average concentrations of Pb, Cu, Zn, Cd, Cr, Ni and V are higher in Masan Bay than those in the channel. The latter group of elements show the highest concentration at station M4, off the outfall of treated wastewater disposal. Eighty-one foraminiferal species are identified in total assemblages, including 21 species of living populations. The number of individuals, species number, species diversity and equitability in Masan Bay have lower values than those in Gadeog Channel. The foraminiferal fauna off the outfall is relatively poor. Compared to geochemical and foraminiferal data obtained in 1996, heavy metals are more enriched, and the characteristics of foraminifera are little changed. These features indicate that the pollution of Masan Bay has not been reduced.

Eco-friendly Textile Printing using Marigold Pigment(1): Effect of Binder Type and Mixing Ratio (메리골드 안료를 이용한 친환경 텍스타일 프린팅(1): 바인더의 종류와 혼합비율의 효과)

  • Yeo, Youngmi;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • Dyeing is an essential process for improving the value of textile products, but it is considered as one of industries causing pollution because of producing wastewater containing hazardous chemicals as well as using a large amount of water and energy. Global demand for greener technologies in textile field is getting much more attention and accordingly, the use of eco-friendly natural dyes is growing much larger. In textile printing, both dyes and pigments can be used. Pigment printing is more simple process and requires less water and less energy, compared to dye printing. In this study, the organic pigment was prepared from the marigold colorant. Samples were stencil printed, pressed(70℃, 3min) and then heat treated(150℃, 5min). The uptake of polyacrylic acid as a chemical binder was the lowest. In particular, marigold pigments were excellent in color and texture when Guar Gum and Sodium Alginate were used as binders. In addition, the light and washing fastness was rated very high as 4, 4/5 grades, and the rubbing fastness was also excellent as 3 and 4 grades.

Feasibility of Bioethanol Production from Cider Waste

  • Seluy, Lisandro G.;Comelli, Raul N.;Benzzo, Maria T.;Isla, Miguel A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1493-1501
    • /
    • 2018
  • Wastewater from cider factories (losses during transfers, products discarded due to quality policies, and products returned from the market) exhibits a Chemical Oxygen Demand greater than $170,000mg\;O_2/l$, mainly due to the ethanol content and carbohydrates that are added to obtain the finished product. These effluents can represent up to 10% of the volume of cider produced, and they must be treated to meet environmental regulations. In this work, a process was developed, based on alcoholic fermentation of the available carbohydrates present in ciders. The impact of inhibitors at different pH, size and reuse of inoculums and different nutrient supplementation on the ethanol yield were evaluated. The use of a 0.5 g/l yeast inoculum and corn steep water as the nutrient source allowed for depletion of the sugars in less than 48 h, which increased the content of ethanol to more than 70 g/l.

Effects of Oxidation Reduction Potential and Organic Compounds on Anammox Reaction in Batch Cultures

  • Viet, Truong Nguyen;Behera, Shishir Kumar;Kim, Ji-Won;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.210-215
    • /
    • 2008
  • The present study investigates the effect of oxidation-reduction potential (ORP) and organic compounds on specific anaerobic ammonium oxidation activity (SAA) using batch experiments. The batch tests were based on the measurement of nitrogen gas production. The relationship between ORP and dissolved oxygen (DO) concentration was found to be ORP (mV) = 160.38 + 68 log [$O_2$], where [$O_2$] is the DO concentration in mg/L. The linear relationship obtained between ORP and SAA ($R^2$ = 0.99) clearly demonstrated that ORP can be employed as an operational parameter in the Anammox process. At ORP value of -110 mV, the SAA was $0.272{\pm}0.03\;g\;N_2-N\;(g\;VSS)^{-1}\;d^{-1}$. The investigation also revealed inhibitory effect of glucose on the SAA while acetate concentration up to 640 mg COD/L (corresponding to 10 mM) had stimulating effect on the SAA. However, acetate concentration beyond 640 mg COD/L had inhibitory effect on the Anammox activity. The results indicated that nitrogen rich wastewaters containing low level organic matter could be better treated by Anammox microorganisms in real-world conditions after some acidification process.

Adsorption properties and metal growth aspects on the surface of activated carbon monolith electrochemically deposited with Ag

  • Oh, Won-Chun;Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2004
  • The electrochemical adsorption of the Ag ions from aqueous solution on pelletized activated carbon monolith was investigated over wide range of operation time. The adsorption capacities of pelletized activated carbon monolith are associated with their internal porosity and are related properties such as surface area, pore size distribution. The chemical industry generates wastewater that contains toxic matters like heavy metals in small concentrations so that their economic recovery is not feasible. But, the method using activated carbon monolith can be used to withdrawal of heavy metals in waste water. After the electrochemical treatment, the quantitative properties in Ag ion solutions are also examined by pH concentration and studied elemental analysis by ICP-Atomic Emission Spectrometer and Energy Disperse X-ray (EDX) spectra. It is consider that the pH is very important factor at the reason of water pollutant with increasing acidity in industrial field. The result of quantitative analysis using Inductively Coupled Plasma-Atomic Emission Spectrometer of metal after electrochemical reaction in Ag ions solution depending on time are shown that the amount of Ag ions deposited was decreased with growth of Ag particles on the carbon surfaces as increasing electrochemically treated time. And, surface morphologies are investigated by scanning electron microscopy (SEM) to explain the changes in adsorption properties.

Design of a Water Reuse System Combined with a Fiber Filtration and Electrolysis (섬유여과기와 전기분해조를 병합한 물 재이용 시스템 설계)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1385-1391
    • /
    • 2015
  • A water reuse system was designed for a demonstration plant by combining fiber filtration and electrolysis. A discharged dye wastewater after treated with biomedia was used in this study. It was found that an additional removal of suspended solids (SS) was feasible with 2-stage filtration while electrolysis was not effective. Also, $COD_{cr}$ and $COD_{Mn}$ were not removed with 2 -stage filtration but electrolysis resulted in about 26.9% additional removal. This indicates that electrolysis play an important role in organic removal. Removal of T-N and T-P was negligible with 1 and 2-stage fiber filtration and low-level electrolyte. However, with 2000 ppm of electrolyte, their removal efficiencies were about 83.1 and 60%, respectively, suggesting that the removal rates are well associated with the electrolyte concentrations. With high-level electrolyte, colority was removed about 82% while chlorine ions were removed only about 10%. Therefore, to treat underground water containing high-level salinity in the follow-up study, based on the results in this paper, a combined system with selection of additional unit process and reverse osmosis will be designed.

Phenol Treatment Plasma Reactor of Dielectric Barrier Discharge (유전체 장벽 방전 플라즈마 반응기를 이용한 페놀 처리)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.479-488
    • /
    • 2012
  • A Dielectric barrier discharge (DBD) plasma is shown in the present investigation to be effective of phenol degradation in the aqueous solutions in batch reactor with continuous air bubbling. Removal of phenol and effects of various parameters on the removal efficiency in the aqueous solution with high-voltage streamer discharge plasma are studied. The effect of 1st voltage (80 ~ 220 V), air flow rate (3 ~ 7 L/min), pH (3 ~ 11), electric conductivity of solution (4.16 ${\mu}S$/cm, deionized water) ~ 16.57 mS/cm (addition of NaCl 10 g/L) and initial phenol concentration (2.5 ~ 20.0 mg/L) were investigated. The observed results showed that phenol degradation was higher in the basic solution than that of the acidic. The optimum values on the 1st voltage and air flow rate for phenol degradation were 140 V and 6 L/min, respectively. It was considered that absorbance variation of $UV_{254}$ of phenol solution can be use as an indirect indicator of change of the non-biodegradable organic compounds within the treated phenol solution. Electric conductivity was not influenced the phenol degradation. To obtain the removal efficiency of phenol and COD of phenol over 97 % (initial phenol concentration, 10.0 mg/L), 80 min and 120 min were need, respectively. Phenol and COD degradation showed a pseudo-first order kinetics.

Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode (3차원 전극을 사용한 Rhodamine B의 전기분해에 미치는 운전인자의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-303
    • /
    • 2009
  • A simulated wastewater containing the dye Rhodamine B (RhB) was electrolytically treated using a three-dimensional electrode reactor equipped with granular activated carbon (GAC) as particle electrode. The effect of type of packing material (GAC, ACF, Nonwoven fabric fiber coated with activated carbon), amounts of GAC packing (25-100 g), current (0.5-3 A) and electrolyte concentration (0.5-3 g/l) was evaluated. Experimental results showed that performance for RhB decolorization of the 3 three-dimensional electrodes lie in: GAC > Nonwoven fabric fiber > ACF. When considered RhB decolorization, oxidants concentration and electric power, optimum GAC dosage was 50 g. Generated concentration of 3 oxidants ($ClO_2$, free Cl, $H_2O_2$) was increased with increase of applied current, however optimum current for RhB degradation was 2.5 A. The oxidants concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.5 g/l.

The Contamination of Sventoji River Bottom Sediments by Heavy Metals in Ukmerge, Lithuania

  • Valskys, Vaidotas;Motiejunas, Mindaugas;Ignatavicius, Gytautas;Sinkevicius, Stanislovas
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Bottom sediment pollution with heavy metals of the Sventoji River in Ukmerge, Lithuania using X-ray fluorescence spectrometry is analyzed in this article. During the research, qualitative and quantitative parameters of heavy metal concentrations and their distribution were investigated. This article presents obtained results of study, where bottom sediment samples were examined from both shores of the river of Sventoji. During this research, received data was treated using GIS software, which helped to interpolate the data of concentrations into the research polygon of the river. GIS software also helped to evaluate the urban runoff influence to the bottom sediment quality and exclude sources of pollution. The runoff dischargers which transport surface wastewater to the river were registered before sampling. At the mouth of streams, flowing into the river of Sventoji, additional samples were taken. After comprehensive river bottom sediment research there is a possibility to assess the extent of anthropogenic activity and its impact on the river ecosystem and human health.