• Title/Summary/Keyword: Travel-time prediction

Search Result 99, Processing Time 0.022 seconds

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

Feasibility on Statistical Process Control Analysis of Delivery Quality Assurance in Helical Tomotherapy (토모테라피에서 선량품질보증 분석을 위한 통계적공정관리의 타당성)

  • Kyung Hwan, Chang
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.491-502
    • /
    • 2022
  • The purpose of this study was to retrospectively investigate the upper and lower control limits of treatment planning parameters using EBT film based delivery quality assurance (DQA) results and to analyze the results of statistical process control (SPC) in helical tomotherapy (HT). A total of 152 patients who passed or failed DQA results were retrospectively included in this study. Prostate (n = 66), rectal (n = 51), and large-field cancer patients, including lymph nodes (n = 35), were randomly selected. The absolute point dose difference (DD) and global gamma passing rate (GPR) were analyzed for all patients. Control charts were used to evaluate the upper and lower control limits (UCL and LCL) for all the assessed treatment planning parameters. Treatment planning parameters such as gantry period, leaf open time (LOT), pitch, field width, actual and planning modulation factor, treatment time, couch speed, and couch travel were analyzed to provide the optimal range using the DQA results. The classification and regression tree (CART) was used to predict the relative importance of variables in the DQA results from various treatment planning parameters. We confirmed that the proportion of patients with an LOT below 100 ms in the failure group was relatively higher than that in the passing group. SPC can detect QA failure prior to over dosimetric QA tolerance levels. The acceptable tolerance range of each planning parameter may assist in the prediction of DQA failures using the SPC tool in the future.

Development of Bus Arrival Time Estimation Model by Unit of Route Group (노선그룹단위별 버스도착시간 추정모형 연구)

  • No, Chang-Gyun;Kim, Won-Gil;Son, Bong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.135-142
    • /
    • 2010
  • The convenient techniques for predicting the bus arrival time have used the data obtained from the buses belong to the same company only. Consequently, the conventional techniques have often failed to predict the bus arrival time at the downstream bus stops due to the lack of the data during congestion time period. The primary objective of this study is to overcome the weakness of the conventional techniques. The estimation model developed based on the data obtained from Bus Information System(BIS) and Bus management System(BMS). The proposed model predicts the bus arrival time at bus stops by using the data of all buses travelling same roadway section during the same time period. In the tests, the proposed model had a good accuracy of predicting the bus arrival time at the bus stops in terms of statistical measurements (e.g., root mean square error). Overall, the empirical results were very encouraging: the model maintains a prediction job during the morning and evening peak periods and delivers excellent results for the severely congested roadways that are of the most practical interest.

Rolling Horizon Implementation for Real-Time Operation of Dynamic Traffic Assignment Model (동적통행배정모형의 실시간 교통상황 반영)

  • SHIN, Seong Il;CHOI, Kee Choo;OH, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.135-150
    • /
    • 2002
  • The basic assumption of analytical Dynamic Traffic Assignment models is that traffic demand and network conditions are known as a priori and unchanging during the whole planning horizon. This assumption may not be realistic in the practical traffic situation because traffic demand and network conditions nay vary from time to time. The rolling horizon implementation recognizes a fact : The Prediction of origin-destination(OD) matrices and network conditions is usually more accurate in a short period of time, while further into the whole horizon there exists a substantial uncertainty. In the rolling horizon implementation, therefore, rather than assuming time-dependent OD matrices and network conditions are known at the beginning of the horizon, it is assumed that the deterministic information of OD and traffic conditions for a short period are possessed, whereas information beyond this short period will not be available until the time rolls forward. This paper introduces rolling horizon implementation to enable a multi-class analytical DTA model to respond operationally to dynamic variations of both traffic demand and network conditions. In the paper, implementation procedure is discussed in detail, and practical solutions for some raised issues of 1) unfinished trips and 2) rerouting strategy of these trips, are proposed. Computational examples and results are presented and analyzed.

Analysis of Cosmic Radiation Dose of People by Abroad Travel (일반인들의 항공여객기 이용 시 우주방사선 피폭선량 비교 분석)

  • Jang, Donggun;Shin, Sanghwa
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.339-344
    • /
    • 2018
  • Humans received an exposure dose of 2.4 mSv of natural radiation per year, of which the contribution of spacecraft accounts for about 75%. The crew of the aircraft has increased radiation exposure doses based on cosmic radiation safety management regulations There is no reference to air passengers. Therefore, in this study, we measured the radiation exposure dose received in the sky at high altitude during flight, and tried to compare the radiation exposure dose received by ordinary people during flight. We selected 20 sample specimens, including major tourist spots and the capital by continent with direct flights from Incheon International Airport. Using the CARI-6/6M model and the NAIRAS model, which are cosmic radiation prediction models provided at the National Radio Research Institute, we measured the cosmic radiation exposure dose by the selected flight and departure/arrival place. In the case of exposure dose, Beijing was the lowest at $2.87{\mu}Sv$ (NAIRAS) and $2.05{\mu}Sv$ (CARI - 6/6M), New York had the highest at $146.45{\mu}Sv$ (NAIRAS) and $79.42{\mu}Sv$ (CARI - 6/6M). We found that the route using Arctic routes at the same time and distance will receive more exposure dose than other paths. While the dose of cosmic radiation to be received during flight does not have a decisive influence on the human body, because of the greater risk of stochastic effects in the case of frequent flights and in children with high radiation sensitivity Institutional regulation should be prepared for this.

Hydraulic Relation of Discharge and Velocity in Small, Steep Mountain Streams Using the Salt-dilution Method (Salt-dilution 방법을 이용한 산지소하천의 유량과 유속 관계 분석)

  • Yang, Hyunje;Lee, Sung-Jae;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.158-165
    • /
    • 2018
  • Reach-average velocity prediction in steep mountain streams is important for understanding fluvial processes and practical applications of erosion control in mountain streams. little studies have been conducted in reach-average velocity, but hydraulic researches have been carried out to examine the relationship between discharge and reach-average velocity in torrent reaches using a relatively large amount of discharge data. In this study, a total of 87 data were measured in 8 torrent reaches. Salt-dilution method was used to estimate discharge. Reach-average velocity was calculated from harmonic mean of travel time that were measured by salt-dilution technique. In order to exlpore the hydraulic relation, both discharge and velocity were non-dimensionalized by using $D_{50}$, $D_{84}$, ${\sigma}_{pro}$ and $IPR_{90}$. It also indicated that ${\sigma}_{pro}$ and $IPR_{90}$ were good variables as roughness height for develop the relationship between non-dimensional discharge and velocity in mountain streams. Generally, reach-average velocity could increase exponentially as discharge increases.

Travel Time Prediction Algorithm for Trajectory data by using Rule-Based Classification on MapReduce (맵리듀스 환경에서 규칙 기반 분류화를 이용한 궤적 데이터 주행 시간 예측 알고리즘)

  • Kim, JaeWon;Lee, HyunJo;Chang, JaeWoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.798-801
    • /
    • 2014
  • 여행 정보 시스템(ATIS), 교통 관리 시스템 (ITS) 등 궤적 기반 서비스에서, 서비스 품질을 향상시키기 위해서는 주어진 궤적 질의에 대한 정확한 주행시간을 예측하는 것이 필수적이다. 이를 위한 대표적인 공간 데이터 분석 기법으로는 데이터 분류에서 높은 정확도를 보장하는 규칙 기반 분류화 기법이 존재한다. 그러나 기존 규칙 기반 분류화 기법은 단일 컴퓨터 환경만을 고려하기 때문에, 대용량 공간 데이터 처리에 적합하지 않은 문제점이 존재한다. 이를 해결하기 위해, 본 연구에서는 맵리듀스 환경에서 규칙 기반 분류화를 이용한 궤적 데이터 주행 시간 예측 알고리즘을 개발하고자 한다. 제안하는 알고리즘은 첫째, 맵리듀스를 이용하여 대용량 공간 데이터를 병렬적으로 분석함으로써, 활용도 높은 궤적 데이터 규칙을 생성한다. 이를 통해 대용량 공간 데이터 기반의 규칙 생성 시간을 감소시킨다. 둘째, 그리드 구조 기반의 지도 데이터 분할을 통해, 사용자 질의처리 시 탐색 성능을 향상시킨다. 즉, 주행 시간 예측을 위한 규칙 그룹을 탐색 시 질의를 포함하는 그리드 셀만을 탐색하기 때문에, 질의처리 성능이 향상된다. 마지막으로 맵리듀스 구조에 적합한 질의처리 알고리즘을 설계하여, 효율적인 병렬 질의처리를 지원한다. 이를 위해 맵 함수에서는 선정된 그리드 셀에 대해, 질의에 포함된 도로 구간에서의 주행 시간을 병렬적으로 측정한다. 아울러 리듀스 함수에서는 출발 시간 및 구간별 주행 시간을 바탕으로 맵 함수의 결과를 병합함으로써, 최종 결과를 생성한다. 이를 통해 공간 빅데이터 분석을 통한 주행 시간 예측 기법의 처리 시간 및 결과 정확도를 향상시킨다.

Time Series Analysis for Traffic Flow Using Dynamic Linear Model (동적 선형 모델을 이용한 교통 흐름 시계열 분석)

  • Kim, Hong Geun;Park, Chul Young;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.179-188
    • /
    • 2017
  • It is very challenging to analyze the traffic flow in the city because there are lots of traffic accidents, intersections, and pedestrians etc. Now, even in mid-size cities Bus Information Systems(BIS) have been deployed, which have offered the forecast of arriving times at the stations to passengers. BIS also provides more informations such as the current locations, departure-arrival times of buses. In this paper, we perform the time-series analysis of the traffic flow using the data of the average trvel time and the average speed between stations extracted from the BIS. In the mid size cities, the data from BIS will have a important role on prediction and analysis of the traffic flow. We used the Dynamic Linear Model(DLM) for how to make the time series forecasting model to analyze and predict the average speeds at the given locations, which seem to show the representative of traffics in the city. Especially, we analysis travel times for weekdays and weekends separately. We think this study can help forecast the traffic jams, congestion areas and more accurate arrival times of buses.

Arrival Time Estimation for Bus Information System Using Hidden Markov Model (은닉 마르코프 모델을 이용한 버스 정보 시스템의 도착 시간 예측)

  • Park, Chul Young;Kim, Hong Geun;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • BIS(Bus Information System) provides the different information related to buses including predictions of arriving times at stations. BIS have been deployed almost all cities in our country and played active roles to improve the convenience of public transportation systems. Moving average filters, Kalman filter and regression models have been representative in forecasting the arriving times of buses in current BIS. The accuracy in prediction of arriving times depends largely on the forecasting algorithms and traffic conditions considered when forecasting in BIS. In present BIS, the simple prediction algorithms are used only considering the passage times and distances between stations. The forecasting of arrivals, however, have been influenced by the traffic conditions such as traffic signals, traffic accidents and pedestrians ets., and missing data. To improve the accuracy of bus arriving estimates, there are big troubles in building models including the above problems. Hidden Markov Models have been effective algorithms considering various restrictions above. So, we have built the HMM forecasting models for bus arriving times in the current BIS. When building models, the data collected from Sunchean City at 2015 have been utilized. There are about 2298 stations and 217 routes in Suncheon city. The models are developed differently week days and weekend. And then the models are conformed with the data from different districts and times. We find that our HMM models can provide more accurate forecasting than other existing methods like moving average filters, Kalmam filters, or regression models. In this paper, we propose Hidden Markov Model to obtain more precise and accurate model better than Moving Average Filter, Kalman Filter and regression model. With the help of Hidden Markov Model, two different sections were used to find the pattern and verified using Bootstrap process.

Ultrasonic Pulses Characteristics in Lightweight Fine Aggregate Concrete under Various Load Histories (하중 이력에 따른 경량 잔골재 콘크리트의 초음파 특성)

  • Yoo, Kyung-Suk;Kim, Jee-Sang;Kim, Ik-Beam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 2014
  • One of the widely used NDT(Non-destructive techniques) is the ultrasonic pulse velocity (USPV) method, which determines the travel time of the ultrasonic pulse through the tested materials and most studies were focused on the results expressed in time domain. However, the signal of ultrasonic pulse in time domain can be transformed into frequency domain, through Fast fourier transform(FFT) to give more useful informations. This paper shows a comparison of changes in the pulse velocity and frequency domain signals of concrete for various load histories using lightweight fine aggregates. The strength prediction equation for normal concrete using USPV cannot be used to estimate lightweight fine aggregate concrete strength. The signals in frequency domain of ultrasonic pulse of lightweight fine aggregate concrete does not show any significant difference comparing with those of normal concrete. The increases in stress levels of concrete change the pulse velocities and maximum frequencies, however the apparent relationship between themselves can not be found in this experiment.