본 논문은 일반국도 실시간 통행시간 정보제공을 위한 동적 통행시간 예측모형을 개발했다. 교통정보 제공을 위한 통행시간 예측에 관한 기존의 많은 연구가 있었지만, 우리나라에서 일반국도에 대한 통행시간 예측모형은 아직 없었다. 통행시간 예측을 위해 현재 일반국도 1호선에 약 10km 간격으로 연속하여 설치된 AVI자료를 이용했고, 예측모형 평가를 위한 통행시간 기준값 수집을 위해 프로브차량을 이용했다. 본 논문에 사용된 일반국도 1호선 구간은 잦은 유출 입 지점으로 인해 원시 AVI 자료에 많은 이상치가 관측되었다. 이러한 이상치를 제거하기 위해 저자가 제안한 알고리즘을 사용하여 이상치를 제거한 후, 칼만필터링 알고리즘을 이용하여 통행시간을 예측했다. 수집주기를 달리하여 예측모형을 평가한 결과 5분, 10분, 15분 수집주기에 대해서는 MARE가 $0.061{\sim}0.066$로 비슷하게 나왔고, 30분 수집주기는 0.078로 나와 다소 높은 오차율을 나타냈다.
운전자가 원하는 통행시간 예측 정보를 제공하기 위해서는 이미 알고 있는 교통상황 하에서의 통행시간 추정이 선행되어야 한다. 그러나 현재 고속도로에 적용되고 있는 지점검지기에 의한 통행시간 추정 방법은 신뢰성 있는 통행시간을 산출하기에는 한계가 있다. 따라서 본 연구에서는 신뢰성 있는 예측정보를 제공하기 위한 기반 결과로서 고속도로 경로의 기 종점 영업소 간에서 실제 소요된 통행시간의 추정에 주안점을 두었다. 통행시간 추정시 교통정보의 활용도 측면에서 매우 유용하면서도 풍부한 고속도로 통행료 수납시스템 (Toll Collection System, TCS) 자료를 이용하였다. 경로통행시간 추정모형에서는 경로 내의 링크통행시간을 조합하여 고속도로의 경로통행시간을 추정하였다. TCS 자료가 결측 된 경우에는 통행시간의 증가패턴을 분석하여 선형보간법을 통해 이전주기의 TCS 통행시간을 참조하였다. 결측이 장기간 지속되거나 통행시간의 변동이 심한 전이시간대에는 VDS 시공도에 의한 동적인 통행시간을 추정하였다. 본 연구에서 제안한 모형을 통해 추정된 경로의 통행시간은 경로를 직접 통행한 차량들의 통행시간과 통계적으로 차이가 없음이 검증되었다. 제안모형은 동일 출발 시간대에서는 통행시간의 편차가 심하고 전 후 시간대에서는 통행시간 대푯값의 변화 패턴이 불규칙한 장거리 구간에 대해 신뢰성 있는 통행시간을 추정할 수 있었다. 본 연구에서 추정된 통행시간은 교통 상황의 성능 지표 및 실시간 통행시간 예측 분야에 활용될 수 있을 것으로 기대된다.
4차 산업혁명 시대가 도래함에 따라 빅데이터를 활용하는 딥러닝에 대한 관심이 높아졌으며 다양한 분야에서 딥러닝을 이용한 연구가 활발하게 진행되고 있다. 교통 분야에서도 교통빅데이터를 많이 활용하는 만큼 딥러닝을 연구에 이용한다면 많은 이점이 있을 것이다. 본 연구에서는 통행속도를 예측하기 위하여 딥러닝 기법인 LSTM을 이용한 단기 통행속도 예측 모형을 구축하였다. 예측에 활용한 데이터인 통행속도 데이터가 시계열 데이터인 것을 고려하여 시계열 예측에 적합한 LSTM 모델을 선택하였다. 통행속도를 보다 정확하게 예측하기 위하여 시간적, 공간적 영향을 모두 반영하는 모형을 구축하였으며, 모형은 1시간 이후를 예측하는 단기 예측모형이다. 분석데이터는 서울시 교통정보센터에서 수집한 5분 단위 통행속도를 활용하였고 분석구간은 교통이 혼잡한 강남대로 일부구간으로 선정하여 연구를 수행하였다.
실시간 자료를 반영한 통행시간 예측 기법은 다양하지만 관련 연구 검토 결과 과거이력데이터가 충분하다면 타 모형에 비해 K 최대근접이웃(K-Nearest Neighbors)의 정확도가 우수하므로 본 연구에서는 이에 대한 적용 방법 도출 및 가능성 평가를 목적으로 한다. 본 연구에서는 KNN의 입력 자료로 TCS 교통량 및 DSRC 구간통행시간의 실시간 및 과거 이력자료, 경로통행시간 이력자료를 활용하였다. 통행시간 예측치는 TCS 교통량 및 DSRC 구간통행시간의 실시간 자료와 유사한 경로통행시간을 탐색한 후 이를 가중평균하여 산출하였다. 예측 기법을 적용한 결과 DSRC 구간통행시간의 가중치가 증가할수록 정확도는 증가하였으며, 이는 실시간 교통상황 변화를 DSRC 구간통행시간이 잘 반영하기 때문이다. 그러나 TCS 교통량을 기반으로 한 경우 역시 정확도의 차이가 크지 않으며, 변화 추이도 유사하게 나타났다. 이러한 결과를 볼 때 향후 대용량의 과거이력자료가 축적될 경우 예측오차는 더욱 감소될 것으로 기대된다.
PURPOSES : Two-lane highways have one lane in each direction, and lane changing and passing maneuvers take place in the opposing lane depending on the availability of passing sight distance. 2001 Korea Highway Capacity Manual (KHCM) is classified into two classes of two-lane highways (Type I, II), and average travel speed and time-delayed rate are used as measures of effectiveness (MOEs). However, since existing two-lane highways have both uninterrupted and interrupted traffic flow-system elements, a variety of free-flow speeds exhibits in two-lane highways. In addition, it is necessary to check if the linear-relationship between volumes and time-delayed rate is appropriate. Then, this study is to reestablish the relationship between average travel speed, time-delayed rate, and flow. METHODS : TWOPAS model was selected to conduct this study, and the free-flow speeds of passenger cars and the percentage of following vehicles observed in two-lane highways were applied to the model as the input. The revised relationships were developed from the computer simulation. RESULTS : In the revised average travel speed vs. flow relationship, the free-flow speed of 90km/h and 70km/h were added. It shows that the relationship between time delayed-rate and flow appeared to be appropriate with the log-function form and that there was no difference in time-delayed rate between the free flow speeds. In addition to revise the relationships, the speed prediction model and the time-delayed rate prediction model were also developed. CONCLUSIONS : The revised relationships between average travel speed, time-delayed rate, and flow would be useful in estimating the Level of Service(LOS) of a two-lane highway.
지능형교통정보시스템에 있어서 적절한 교통량 분산을 통한 교통망의 제어 및 정확한 주행정보의 제공을 위해 현재의 교통상황 또는 링크통행정보를 정확히 판단하고 평가할 수 있는 알고리즘의 개발이 필요하다. 본 논문에서는 퍼지추론시스템을 적용하여 보다 합리적으로 링크통행속도를 판단할 수 있는 알고리즘을 제안한다. 교통상황을 특징짓는 세 가지 요인으로 시간, 요일, 속도를 선정하였고 이를 퍼지변수로 표현하여 링크통행속도의 예측을 위한 적절한 퍼지규칙을 선정하였다. 본 논문에서는 실제 주행실험을 통해 얻은 차량의 GPS정보만을 사용하였다. 취득한 GPS정보 중에서 신뢰도가 높은 데이터만을 선택하여 도로통행속도를 계산하였고 퍼지추론의 과정을 통해 링크주행속도를 예측하였다.
We introduce a machine learning-based web application to help travel agents plan a package tour schedule. K-nearest neighbor (KNN) classification predicts the optimal tourists' dwelling time based on a variety of information to automatically generate a convenient tour schedule. A database collected in collaboration with an established travel agency is fed into the KNN algorithm implemented in the Python language, and the predicted dwelling times are sent to the web application via a RESTful application programming interface provided by the Flask framework. The web application displays a page in which the agents can configure the initial data and predict the optimal dwelling time and automatically update the tour schedule. After conducting a performance evaluation by simulating a scenario on a computer running the Windows operating system, the average response time was 1.762 s, and the prediction consistency was 100% over 100 iterations.
무선통신기기 보급 확대로 인해 프로브 기반 교통정보시스템이 확대 구축되고 있다. 프로브 기반 통행시간 정보의 시간 처짐 현상 극복을 위해 다수의 예측 기법들이 적용되고 있지만, 일별 및 요일별 교통패턴이 불규칙한 구간에서는 예측 기법의 효용성이 저하되는 것으로 알려져 있다. 이로 인해 불규칙한 교통패턴을 나타내는 구간에서는 일반적으로 5분 집계단위의 프로브 정보를 사용하는데, 이는 집계 시간간격만큼 시간 처짐 현상을 증대시킨다. 이에 본 연구에서는 통행시간 패턴이 불규칙한 구간에 적용 가능한 교통정보 제공 방법론을 제안하였다. 제안된 방법은 개별차량 단위 프로브 정보와 5분 집계 프로브 정보를 융합 적용하는 것으로써, 제안된 방법론 적용 시 통행시간 정보 오차를 최대 18%까지 감소시킬 수 있는 것으로 분석되었다.
In this paper, we propose a predictive system for the avoidance of the moving obstacle. In the dynamic environment, robots should travel to the target point without collision with the moving obstacle. For this, we need the prediction of the position and velocity of the moving obstacle. So, we use the Kalman filer algorithm for the prediction. And for the application of the Kalman filter algorithm about the real time travel, we obtain the position of the obstacle which has the future time using Fuzzy system. Through the computer simulation studies, we show the effectiveness of the proposed navigational algorithm for autonomous mobile robots.
본 연구는 차량검지기 데이터를 이용한 통행시간 추정 및 예측에 관한 수집기법 및 추정·예측기법의 고찰을 통해 고속도로 환경에 적합한 통행시간 추정 및 예측모형을 개발하는 데 목적이 있다. 먼저, 기존 통행시간 추정기법의 고찰을 통해 차량검지기에서 수집되는 교통데이터 중 교통류의 변동을 민감하게 포착할 수 있는 교통량을 이용한 통행시간 추정모형을 정립하고자 하였다. 기존방식인 차량검지기 속도 데이터를 이용한 통행시간과 본 연구에서 제안한 추정모형과의 비교 분석을 위해, 실측치에 거의 근사하는 통행료 징수시스템의 출발지기준 통행시간을 이용하여 통행시간 산출기법의 적용성 평가를 수행한 결과, 고속도로 구간의 혼잡시 본 연구모형에 의한 통행시간 산출방식이 기존방식보다 신뢰성있는 통행시간을 제공할 수 있는 것으로 나타났다. 따라서, 본 연구에서는 고속도로 구간의 차량통과속도가 70km/h이상일 때는 기존 차량검지기 속도데이터를 이용한 통행시간 산출방식을 적용하고 혼잡시에는 교통량을 이용한 추정모형에 의한 통행시간 산출방식을 병용하여 적용하는 것이 타당하다는 결론을 도출하였다. 통계적 모형을 이용한 교통상황의 예측과 보다 정확한 통행시간을 예측하기 위해 본 연구에서 칼만필터를 이용한 단기 예측을 수행해 본 결과, 시시각각 변화하는 고속도로의 교통류에 대해 예측력이 우수한 것으로 판단되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.