택시 프로브(Probe)를 이용한 구간통행속도 모니터링체계는 지능형교통체계(ITS)의 핵심적인 하부시스템 중 하나이다. 택시 프로브기법을 통해 수집되는 구간통행속도는 도시가로망의 교통상태 모니터링과 통행시간 정보제공에 널리 활용되고 있다. 그러나 택시 Probe기법은 표본수가 적고 교통혼잡으로 인하여 구간통행시간이 자료수집 주기보다 큰 경우, 실시간으로 자료가 수집되지 않는 누락상태가 발생하게 된다. 이러한 누락상태는 단일시간대에서 다중시간대에 걸쳐 발생하게 되며, 기존의 단일시간대 예측기법으로는 다중시간대의 상태를 예측하지 못하는 단점이 있다. 따라서 다중시간대 누락상태에서 실시간 구간통행속도를 예측하기위한 기법이 요구된다. 본 연구에서는 기존의 단일시간대 예측기법의 한계를 극복하면서 단일 및 다중시간대 통행속도를 예측하기위한 기법을 개발하였다. 개발된 모형은 비모수회귀(NPR)을 기반으로 개발되었으며, 다중시간대 예측에도 불구하고 기존의 단일시간대 예측기법보다 우수한 정확도를 보였다.
최근 국내에서는 대도시권의 교통혼잡 완화를 위하여 다양한 대중교통 활성화 정책을 시행중에 있다. 특히 대도시권역에서는 버스정보시스템이 도입되어 버스의 현재위치, 도착예정시간 등에 대한 정보를 제공하고 있다. 하지만 복잡한 도시부를 지나는 버스들의 경우 반복적인 교통혼잡과 버스몰림으로 인하여 정확한 통행시간 정보제공 시 정확도를 확보하는데 어려움이 있다. 기존 버스 통행시간 연구는 링크별 소통정보 제공방식으로 인하여 버스 이용자의 경로 통행시간 정보 제공 시 어려움이 있고, 데이터 기반의 단기 통행방식으로 중장기 정보 제공이 어렵다는 한계가 있다. 이에 본 연구에서는 경로기반의 중장기 버스통행시간 예측 방법론에 대한 연구를 실시한다. 이를 위하여 2015년 버스통행정보로 학습데이터, 2016년 자료로 검증데이터를 구성하였다. 학습데이터를 이용하여 버스통행정보를 분석하여 버스통행시간에 영향을 미치는 요인들을 출발시각, 요일, 그리고 기상요인 등으로 분류하고, 이들의 특성 값을 자기조직화지도를 활용하여 비슷한 통행 패턴을 가지는 군집으로 분류하였다. 도출된 군집들을 바탕으로 맑음과 우천시에 대한 요일/출발시각 별 버스통행시간 참조 테이블을 구성하였다. 검증데이터를 이용하여 본 연구에서 도출한 버스통행시간의 정확도를 검증하였다. 본 연구의 중장기 예측 알고리즘을 활용하여 기존의 직관적이고 경험적인 접근법의 한계를 극복할 수 있으며, 예측의 정확도 개선을 통한 버스이용자 만족도 향상 및 탄력적인 대중교통 정책 수립이 가능할 것으로 판단된다.
본 연구에서는 고속도로 교통관리시스템에서 VDS 교통정보 와 대상지역의 TCS로부터 여행시간을 수집하고, 이들 자료를 토대로 신경망 이론을 이용한 여행시간 추정(Estimation)모형을 구축하였다. 또한, 신경망 이론에 칼만필터기법(Kalman Filter Technique)을 연계하여 단위시간 동안의 여행시간을 예측(Prediction)하여, 고속도로 이용자에게 보다 향상된 실시간 여행시간정보를 제공할 수 있는 여행시간 추정 및 예측 알고리즘을 개발하였다. 신경망 모형의 여행시간 추정 방식과 현재 적용되고 있는 여행시간 산출 방식의 비교/분석을 위해 각 각의 여행시간 산출방식에 의한 평가지표별로 시행한 평가의 결과는 신경망 모형이 제시한 대부분의 지표에서 상대적으로 우수하게 나타났다.
통행시간은 교통정보 중에서 가장 대표적이고 이용자 선호도가 높은 정보이다. 본 연구에서는 일반국도를 대상으로 실시간 시스템에 적용 가능한 통행시간 예측 방법을 개발하고자 하였다. 통행시간 예측방법으로 비모수적 접근 방법인 K 최대근접이웃 방법을 적용하였다. K 최대근접이웃 방법은 데이터에 대한 특별한 가정이 필요 없고, 모수 추정 과정이 필요 없어 실시간 교통관리시스템에 적합하다. K 최대근접이웃 방법의 우수성을 평가하기 위해 교통 분야에서 많이 적용되고 있는 이력자료 평균방법과 칼만 필터방법을 선정하여 평균절대백분율오차와 변동계수를 통해 평가하였다. 평가 결과 K 최대근접이웃 방법이 이력자료 평균방법과 칼만 필터방법에 비해 우수한 것으로 분석되었다. 통행시간 정보 제공 시 본 연구에서 개발된 방법을 통해 도출된 통행시간과 구간검지기로부터 관측된 통행시간을 탄력적으로 적용함으로써 통행시간 정보의 신뢰도를 향상시킬 수 있을 것으로 기대된다.
주행 시간 예측은 첨단 여행정보 시스템 (ATIS) 및 교통관리 시스템 (ITS)에서 필수적이다. 이를 위해 본 연구에서는 대용량의 데이터 분류에서 높은 정확도와 빠른 속도를 보장하는 $Na{\ddot{i}}ve$ Bayesian 분류화 기법을 기반으로 한 주행시간 예측 알고리즘을 제안한다. 제안된 알고리즘은 도로 네트워크 상에서 사용자 지정 주행 경로에 대하여 주행시간 예측이 가능하며, 또한 주어진 경로에 대해 시간대 별 평균 구간 속도를 고려하여 보다 정확한 주행 시간 예측을 수행한다. 제안된 알고리즘을 기존의 링크-기반 예측(link-based prediction)알고리즘[1] 및 Micro T* 알고리즘[2]과 성능 비교를 수행하였다. 성능 비교 결과, 제안된 기법이 타 예측기법에 비해 MARE (mean absolute relative error)가 크게 감소하여 성능이 향상되었음을 보였다.
최근 몇 년간 도시교통문제의 해결책으로 부각되어온 지능형교통체계(ITS : Intelligent Transport System)의 한 분야로 첨단여행자 정보체계(ATIS : Advanced Travellers Information System)는 자동차에 장착된 항법장치(CNS)를 통해 운전자에게 원하는 목적지까지 최적경로를 제공하거나 경로에 대한 통행시간 정보를 제공 또는 예측해 주는 시스템이다. 본 연구에서는 이러한 최적경로 제공이나 통행시간 예측에 있어 좀 더 효율적인 통행시간 예측모형을 개발하고자 하였다. 현재까지의 통행시간 예측은 운전자가 통행을 시작할 때의 교통상황에 대한 정보이기 때문에 운전 중에 달라지는 교통상황을 반영할 수 없어 이로 인해 운전자가 경험하는 통행시간과 큰 차이를 발생시킬 수 있다. 본 연구에서는 이러한 불합리적인 예측시스템을 개선시킬 수 있는 예측된(predicted) 통행시간 예측 모형을 개발하고자 하였다. 이를 위해 우선 통행시간 예측모형을 특정링크에 적용시켜 모형들의 예측치와 실제 통행시간을 비교하여 교통량 흐름 패턴에 따라 어느 모형이 적합한지, 또 예측시간이 달라짐에 따라 모형들의 적합도와 첨두와 비첨두시 예측시간 간격에 따라 예측치와 실측치의 오차율을 알아보았다, 이를 통해 선정된 확률과정 모형과 칼만 필터링 예측모형을 서울시의 4개축에 대해서 다시 적용해 보았다. 그 결과 단기통행시간 예측에 있어서는 칼만필터링모형이, 장기 통행시간 예측에 있어서는 확률과정 모형이 통행시간 예측에 있어 우수한 모형임을 밝혀냈다. 마지막으로 서울시 28개 교통축의 5분 후 통행시간 예측에 칼만필터링 모형을 이용하여 오차분석을 적용하여 보았다. 그 결과 칼만필터링 모형이 신뢰할 만한 오차율을 보였다.
현재까지 통행시간 예측과 관련된 다양한 연구들이 수행되었지만, 한국고속도로 특성에 맞는 예측방법론에 대한 실증연구는 부족한 실정이다. 이에 본 연구에서는 실제 통행시간을 기반으로한 DSRC 자료를 바탕으로 한국고속도로에 적절한 예측방법론을 도출한다. 경부고속도로 안성 JC~오산IC 구간의 24시간 DSRC 자료를 이용하며 단주기 통행시간 예측 및 비선형 관계에서 높은 정확도를 보이는 인공신경망 기법을 적용한다. 이어서 랜덤난수를 이용한 통행시간 예측결과의 정확도 검증을 실시한다. 통행시간 예측결과 오차율이 약 4%로 우수한 예측력을 보였으며, 이는 패턴기반 인공신경망 예측시 이력자료의 전처리 과정과 최적의 입력층 및 은닉층의 선정으로 인한 결과로 판단된다. 통행시간 예측결과의 검증을 위해서 랜덤난수를 이용하였으며, 랜덤난수가 이력자료 패턴에 포함되지 않은 경우 실측치와의 오차율이 18.98%로 높게 도출되었다. 이는 인공신경망을 이용한 통행시간 예측시 패턴DB가 예측의 정확도에 주요하게 작용한 결과로 판단된다. 본 연구의 결과를 통해서 한국고속도로 특성에 맞는 통행시간 예측 및 정보제공이 가능할 것으로 판단된다.
전통적으로 동적 교통망 모형들은 실시간 교통운영 문제를 위한 도구로 인식되어 왔다. 이와 같은 모형들을 활용하는 방안 중 하나는 예측통행시간을 생성하는 것이다. 예측통행시간 정보는 통행자들이 혼잡한 지역에서 덜 혼잡한 지역으로 경로를 전환할 수 있도록 해 주는데 이는 교통망의 용량을 효과적으로 활용하게 한다. 이러한 접근 방법은 돌발상황이 발생했을 때 매우 효과적일 것으로 예상된다. 이 때 고려해야 할 사항은 통행시간정보가 미래 통행여건 자체에 영향을 준다는 점이다. 이로 인해 예기치 못한 과잉반응(over-reaction)을 야기할 수 있으며 예측정보의 신뢰도를 떨어뜨리는 요인으로 작용할 수도 있다. 본 연구에서는 돌발상황 발생 시를 대상으로 교통망 차원의 통행시간 예측모형을 제시한다. 이 모형에서는 모든 운전자가 개인 차내 단말기를 통해 상세한 교통정보를 이용할 수 있으며 이러한 정보를 바탕으로 경로선택에 관한 의사결정을 할 수 있다고 가정하였다. 경로기반(route-based)의 확률론적 변등부등식(stochastic variational inequality)을 통행시간예측의 기본모형으로 사용하였으며 운전자의 경로전환의사를 반영하기 위해 경로전환함수를 적용하였다. 컴퓨터 프로그램과 간단한 교통망 분석을 통해 제안된 모형의 특성을 살펴보았다.
PURPOSES : The travel times of expressway buses have been estimated using the travel time data between entrance tollgates and exit tollgates, which are produced by the Toll Collections System (TCS). However, the travel time data from TCS has a few critical problems. For example, the travel time data include the travel times of trucks as well as those of buses. Therefore, the travel time estimation of expressway buses using TCS data may be implicitly and explicitly incorrect. The goal of this study is to improve the accuracy of the expressway bus travel time estimation using DSRC-based travel time by identifying the appropriate analysis period of input data. METHODS : All expressway buses are equipped with the Hi-Pass transponders so that the travel times of only expressway buses can be extracted now using DSRC. Thus, this study analyzed the operational characteristics as well as travel time patterns of the expressway buses operating between Seoul and Dajeon. And then, this study determined the most appropriate analysis period of input data for the expressway bus travel time estimation model in order to improve the accuracy of the model. RESULTS : As a result of feasibility analysis according to the analysis period, overall MAPE values were found to be similar. However, the MAPE values of the cases using similar volume patterns outperformed other cases. CONCLUSIONS : The best input period was that of the case which uses the travel time pattern of the days whose total expressway traffic volumes are similar to that of one day before the day during which the travel times of expressway buses must be estimated.
동적 경로 안내 시스템과 같은 첨단 여행 정보 시스템(ATIS)의 발전에 따라 도로 네트워크 상에서 보다 정확한 주행 시간 예측 기법에 대한 연구가 활발히 진행되고 있다. 그러나 기존 대부분의 연구들은 주어진 경로 상의 평균 주행 속도만을 기반으로 주행 시간을 예측한다. 이는 러시아워 시간대의 혼잡한 도로, 주말에 교외로 나가는 대규모의 차량 등과 같은 일별 혹은 주별 도로 교통 상황을 반영하지 못하기 때문에, 주행 시간 예측의 정확도가 저하된다. 이를 해결하기 위해 본 연구에서는 규칙-기반 분류화 기법을 이용한 주행 시간 예측 알고리즘을 제안한다. 제안된 알고리즘은 데이터마이닝 기법인 규칙-기반 분류화 기법을 사용하여, 과거 차량의 궤적 데이터로부터 하루의 시간대별 교통량과 주별 차량의 운행 양식 등 도로 교통 상황을 추출하고, 이를 통해 차량의 주행 시간을 보다 정확하게 예측한다. 제안된 알고리즘 기존의 링크-기반 예측(link-based prediction) 알고리즘, Micro T* 알고리즘[3], 그리고 스위칭 (switching) 알고리즘[10]과 예측 정확도 측면에서 성능 비교를 수행한다. 예측 정확도 성능 비교 결과, 제안된 기법이 타 예측 기법에 비해 MARE (mean absolute relative error) 가 크게 감소하여 성능이 향상됨을 보인다. 그 밖에 다른 기법들과 장단점을 비교하여, 제안된 기법의 유용성을 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.