The purpose of this study is to develop travel-time estimation model using neural networks and prediction model using neural networks and kalman-filtering technique. The data used in this study are travel speed collected from inductive loop vehicle detection systems(VDS) and travel time collected from the toll collection system (TCS) between Seoul and Osan toll Plaza on the Seoul-Pusan Expressway. Two models, one for travel-time estimation and the other for travel-time Prediction were developed. Application cases of each model were divided into two cases, so-called, a single-region and a multiple-region. because of the different characteristics of travel behavior shown on each region. For the evaluation of the travel time estimation and Prediction models, two Parameters. i.e. mode and mean were compared using five-minute interval data sets. The test results show that mode was superior to mean in representing the relationship between speed and travel time. It is, however shown that mean value gives better results in case of insufficient data. It should be noted that the estimation and the Prediction of travel times based on the VDS data have been improved by using neural networks, because the waiting time at exit toll gates can be included for the estimation of travel time based on the VDS data by considering differences between VDS and TCS travel time Patterns in the models. In conclusion, the results show that the developed models decrease estimation and prediction errors. As a result of comparing the developed model with the existing model using the observed data, the equality coefficients of the developed model was average 88% and the existing model was average 68%. Thus, the developed model was improved minimum 17% and maximum 23% rather then existing model .
Human perceptional speed is different from its real speed. There is lack of research that the perceptional speed is different from real speed in 2-dimension, because most research of speed perception has concentrated on points and lines. This research investigates the effects of object size on speed perception. In this research, we used 2-D circular objects of the different size, 0.9, 1.8 and $3.6^{\circ}$. The objects moved 9.0, 13.5 and $18.0^{\circ}$ with three different speeds, 6.0, 9.0 and $18.0^{\circ}$/s. Six participants were exposed to the environment with standard scene(size: $1.8^{\circ}$, speed: $9.0^{\circ}$/s and travel distance: $13.5^{\circ}$). After the first scene, another scene in which the object had changed to different sizes, speeds and distances, was shown to the participants. A magnitude estimation method was used to construct a scale of the perceived speed level. The relationship between the perceived and the actual speed level was explained by Stevens's power law that the value was 0.978 with the exponent of 0.992. The size of object had an effect on the speed perception but travel distance was not. The perceptional speed of bigger object was lower than of smaller object. It showed that the degrees of perceptional speed decreased as size of object increased.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.1D
/
pp.43-50
/
2011
The monitoring system for link travel speed using taxi probe is one of key sub-systems of ITS. Link travel speed collected by taxi probe has been widely employed for both monitoring the traffic states of urban road network and providing real-time travel time information. When sample size of taxi probe is small and link travel time is longer than a length of time interval to collect travel speed data, and in turn the missing state is inevitable. Under this missing state, link travel speed data is real-timely not collected. This missing state changes from single to multiple time intervals. Existing single interval prediction techniques can not generate multiple future states. For this reason, it is necessary to replace multiple missing states with the estimations generated by multi-interval prediction method. In this study, a multi-interval prediction method to generate the speed estimations of single and multiple future time step is introduced overcoming the shortcomings of short-term techniques. The model is developed based on Non-Parametric Regression (NPR), and outperformed single-interval prediction methods in terms of prediction accuracy in spite of multi-interval prediction scheme.
The Korean high-speed rail (HSR) began its commercial service in 2004. This service has been created significant changes in the system of intercity passenger travels of Korea. However, the actual ridership was approximately half of the estimated one in the planning stage. In this background, this paper presents the difference between the stated preference (SP) before the HSR service and the revealed preference (RP) after it using the intercity travel mode choice models. Several meaningful differences are found in terms of the factors affecting the travel mode choice, the estimation results of model, the monetary values of time, and elasticities. While the access/egress travel time of high-speed rail is less important than in-vehicle travel time in the SP sample, they have same weight in the RP sample. Also the RP models show that the probability of choosing HSR can be decreased by the increase of the number of vehicles in household contrary to the results from the SP models. The monetary values of travel time are relatively high and the direct and cross elasticities in response to changes in level-of-service of HSR are relatively low in the RP sample. This Korean case is expected to offer referable material for preparing high-speed rail services in other countries by showing the difference between the SP and RP before/after the actual service, identifying the importance of access/egress travel time and lower direct elasticities of HSR demand.
Recently, there has been growing necessity to estimate the future travel demand of high speed train because the circumstance of high speed train service is rapidly changing with the launching of 2011 second stage of Gyeongbu high speed railway(Dongdaegu-Busan) and the completion of 2014 first stage of Honam high speed railway(Yongsan-Gwangju), etc. This study was designed to estimate future travel demand by analyzing the transport performance and train service characteristics of Gyeongbu and Honam line. This study presents the maximum load section and the changed future travel demand, which will be applied to establish a train operation plan.
Journal of the Korean Society of Industry Convergence
/
v.6
no.4
/
pp.339-345
/
2003
The purpose of this thesis is to develop a simulation model to estimate link travel speed applicable to urban street transportation planning for interrupted traffic flow, influenced by signalized intersection. This link travel speed model is expected to be a better and more than previous studies.
This study estimated the delay factor, which is the ratio of travel time at the speed limit and travel time at the actual speed using real-time traffic information in Seoul. The actual travel speed on the road was lower than the maximum speed of the road and the travel speed was the slowest during the rush hour. As a result of accessibility analysis based on travel speed during the rush hour, the travel time at the actual speed was 37.49 minutes on average. However, the travel time at the speed limit was 15.70 minutes on average. This result indicated that the travel time at the actual speed is 2.4 times longer than that at the speed limit. In addition, this study proposedly defined the delay factor as the ratio of accessibility by the speed limit and accessibility to actual travel speed. As a result of delay factor analysis, the delay factor of Seoul was 2.44. The results by the administrative district showed that the delay factor in the north part areas of the Han River is higher than her south part areas. Analysis results after applying the relationship between road density and traffic volume showed that as the traffic volume with road density increased, the delay factor decreased. These results indicated that it could not be said that heavy traffic caused longer travel time. Therefore, follow-up research is needed based on more detailed information such as road system shape, road width, and signal system for finding the exact cause of increased travel time.
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.12
/
pp.1373-1380
/
2014
In order to calculate accurate traffic and traffic speed, qualified and sufficient GPS data should be provided. However, it is difficult to provide accurate traffic information using restricted GPS data from probe vehicles because of communication costs. This paper developed a algorithm that recovers links omitted by restricted GPS data with topology information, and calculate traffic speed with original links and recovered links. T traffic information service of city with a new algorithm can provide more accurate traffic and traffic speed than the original system.
This study aims to develop travel time estimation and prediction models on the freeway using measurements from vehicle detectors. In this study, we established a travel time estimation model using traffic volume which is a principle factor of traffic flow changes by reviewing existing travel time estimation techniques. As a result of goodness of fit test. in the normal traffic condition over 70km/h, RMSEP(Root Mean Square Error Proportion) from travel speed is lower than the proposed model, but the proposed model produce more reliable travel times than the other one in the congestion. Therefore in cases of congestion the model uses the method of calculating the delay time from excess link volumes from the in- and outflow and the vehicle speeds from detectors in the traffic situation at a speed of over 70km/h. We also conducted short term prediction of Kalman Filtering to forecast traffic condition and more accurate travel times using statistical model The results of evaluation showed that the lag time occurred between predicted travel time and estimated travel time but the RMSEP values of predicted travel time to observations are as 1ow as that of estimation.
Journal of Korean Institute of Industrial Engineers
/
v.26
no.4
/
pp.306-314
/
2000
In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.