The network equilibrium theory is to estimate the travel choices on a transportation network when the resulting travel times and costs are one basis for the choices. Increasing use of this principle on travel assignment problem lead to develop the combined choice models including not only travel options such as mode and route, but location options like trip distribution problems. This paper, first, reviews earlier developments of variable demand network equilibrium models, combined modeles of trip distribution and assignment, and entropy constrained combined models. Then various model structures of combining travel choice models based on network equilibrium theory and entropy constraints are discussed.
Purpose - The current study aims to examine the effect of social network factors on travel agency employees' occupational outcomes such as job performance and job satisfaction through innovation behavior in a comprehensive model. Research design, data, and methodology - Based on a theory of social network, the concept of social network was assessed by three factors: a) network size, b) network range, and c) tie strength. To test the proposed hypotheses, structural equation modeling (SEM) was employed based on data from 197 travel agency employees in Korea. Result - The results showed that the associational activity of network size had a positive effect on innovation behavior, while the network range of network size had a significant negative effect on innovation behavior. Subsequently, innovation behavior positively influenced on job performance and job satisfaction, respectively. Conclusions - The results offer some insights into the extended model and have important managerial implications for Korean travel agencies. More specifically, considering diverse domains of social network and organizational research, this study advances critical utility of social network factors in a high facilitating level of innovation behavior, which can help travel agency employees promote their job performance and job satisfaction.
기존의 고정수요(Fixed Demand)를 전제로 한 가로망 설계 모형에서는 가로망의 구조나 용량이 개선되더라도 장래 기·종점 통행수요는 변하지 않는다고 가정한다. 이는 단기적인 가로망 설계에서는 성립할 수 있지만, 현실적으로 기·종점 통행수요는 네트워크 서비스수준에 따라 변화하므로 고정수요를 전제한 장기적인 가로망 설계문제에서는 그 타당성을 잃어버린다 그러므로 장래 최적 가로망 설계는 현실적 여건과 교통특성상 기·종점 통행 수요가 모형 내부에서 결정되는 내생변수로 처리하는 가변수요(Variable Demand)를 반영한 가로망 설계 문제로 모형을 구축하는 것이 바람직하다. 이러한 맥락에서 본 논문은 가변수요를 갖는 가로망 설계문제에 대한 이중계층 모형을 구축한 다음, 가로망내의 특성치가 변화하였을 때 그 파급영향을 먼저 파악하고 현 가로망 개선에서 가장 먼저 고려해야 할 링크를 찾아내기 위해 민감도 분석을 수행하였고, 민감도 분석과 연관되어 전체 시스템 효과척도를 최적화할 수 있는 대안적인 알고리즘을 제시하고 적용하여 구축된 모형으로 그 유효성을 검증하였고, 기존 고정수요 가로망 설계기법에 내재된 한계점을 극복하고자 하였다.
The important issue for intra-city truck dispatching system is to measure and store actual travel speeds between customer locations. Travel speeds(and times) in nearly all metropolitan areas change drastically during the day because of congestion in certain parts of the city road network. We propose a back-propagation neural network model to recognize the pattern of intra-city vehicle travel speeds between locations that relieve much burden for the data collection and computer storage requirements. On a real-world study using the travel speed data[1] collected in Seoul, we evaluate performance of neural network model and compare with Park & Song model[2] that employs the least square method.
This paper deals with traveling salesman problem(TSP) with the stochastic travel time. Practically, the travel time between demand points changes according to day and time zone because of traffic interference and jam. Since the almost pervious studies focus on TSP with the deterministic travel time, it is difficult to apply those results to logistics problem directly. But many logistics problems are strongly related with stochastic situation such as stochastic travel time. We need to develop the efficient solution method for the TSP with stochastic travel time. From the previous researches, we know that Q-learning technique gives us to deal with stochastic environment and neural network also enables us to calculate the Q-value of Q-learning algorithm. In this paper, we suggest an algorithm for TSP with the stochastic travel time integrating Q-learning and neural network. And we evaluate the validity of the algorithm through computational experiments. From the simulation results, we conclude that a new route obtained from the suggested algorithm gives relatively more reliable travel time in the logistics situation with stochastic travel time.
최근 해외여행에 대한 관심과, 스마트폰의 사용이 증가함에 따라 여행객들의 여행 관련 응용 사용이 늘고 있다. 여행객들에게 필요한 응용은 날씨, 지도, 여행 정보 제공 응용 등이 있다. 하지만 해외에서의 네트워크는 비싸고 불안정하기 때문에, 해외여행객들에게 금전적인 부담을 주고 사용상의 불편함을 준다. 예를 들어, 지도 응용은 네트워크 연결이 필수적이며 이미지 다운로드 양이 많아서 배터리 소모가 많다. 하지만 해외여행은 야외 활동이 주를 이루기 때문에 스마트폰의 충전이 쉽지 않다. 이러한 문제점을 해결하고자 본 논문에서는 네트워크, 배터리의 사용을 최소한으로 줄이는 방법을 목적으로 Travel Manager를 제안하며 구현한다. Travel Manager는 사용자가 네트워크의 연결 여부를 확인하여 수동으로 여행 관련 정보를 동기화할 수 있도록 한다. 그 밖에 환율을 자동 적용하여 경비를 계산하며, 사용자 간에 여행 정보를 주고받을 수 있는 기능을 제안한다. 또한 배터리의 사용을 최소화하면서 네트워크 연결 없이도 사용이 가능한 네트워크 프리 그린 네비게이션을 제안한다.
In recent years, significant advances have been made enabling travel demand analysis and network design methods to be used as increasingly realistic evaluation tools. What has been lacking is the integration of travel demand analysis with network design models. This paper reviews some of advanced (integrated) modeling approaches and presents future research directions of integrated modeling system. To design urban transportation networks, it is argued that the travelers' free choice of mode, destination and route should be introduced into transportation network design procedure instead of assuming that trips from a zone to a workplace are fixed or deriving them in a normative procedure to achieve hypothetical system optima.
Travel time forecasting, especially public bus travel time forecasting in urban areas, is a difficult and complex problem which requires a prohibitively large computation time and years of experience. As the network of target area grows with addition of streets and lanes, computational burden of the forecasting systems exponentially increases. Even though the travel time between two neighboring intersections is known a priori, it is still difficult, if not impossible, to compute the travel time between every two intersections. For the reason, previous approaches frequently have oversimplified the transportation network to show feasibilities of the problem solving algorithms. In this paper, forecasting of the travel time between every two intersections is attempted based on travel time data between two neighboring intersections. The time stamps data of public buses which recorded arrival time at predetermined bus stops was extensively collected and forecast. At first, the time stamp data was categorized to eliminate white noise, uncontrollable in forecasting, based on wavelet conversion. Then, the radial basis neural networks was applied to remaining data, which showed relatively accurate results. The success of the attempt was confirmed by the drastically reduced relative error when the nodes between the target intersections increases. In general, as the number of the nodes between target intersections increases, the relative error shows the tendency of sharp increase. The experimental results of the novel approaches, based on wavelet conversion and neural network teaming mechanism, showed the forecasting methodology is very promising.
This paper presents two analytical approaches to determine the vehicle fleet size for container shuttle service. The shuttle service can be defined as the repetitive travel between the designated places during working period. In the first approach, the transportation model is adopted in order to determine the number of vehicles required. Its advantages and disadvantages in practical application are also discussed. In the second approach, a logical network which is oriented on job is transformed from a physical network which is focused on demand site. Nodes on the logical network represent jobs which include loaded travel, loading and unloading and arcs represent empty travel for the next jobs which include loaded travel, loading and unloading and arcs represent empty travel for the next job. Then a mathematical formulation is constructed similar to the multiple traveling salesman problem (TSP). A solution procedure is carried out based on the well-known insertion heuristic with the real world data.
The important issue for intra-city vehicle scheduling is to measure and store actual vehicle travel speeds between customer locations. Travel speeds(and times) in nearly all metropolitan areas change drastically during the day because of congestion in certain parts of the city road network. We propose three models for estimating departure time-dependent travel speeds between locations that relieve much burden for the data collection and computer storage requirements. Two of the three models use a least squares method and the rest one employs a neural network trained with the back-propagation rule. On a real-world study using the travel speed data collected in Seoul, we found out that the neural network model is more accurate than the other two models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.