• Title/Summary/Keyword: Travel Information

Search Result 1,063, Processing Time 0.026 seconds

Vehicle Acceleration and Vehicle Spacing Calculation Method Used YOLO (YOLO기법을 사용한 차량가속도 및 차두거리 산출방법)

  • Jeong-won Gil;Jae-seong Hwang;Jae-Kyung Kwon;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.82-96
    • /
    • 2024
  • While analyzing traffic flow, speed, traffic volume, and density are important macroscopic indicators, and acceleration and spacing are the important microscopic indicators. The speed and traffic volume can be collected with the currently installed traffic information collection devices. However, acceleration and spacing data are necessary for safety and autonomous driving but cannot be collected using the current traffic information collection devices. 'You Look Only Once'(YOLO), an object recognition technique, has excellent accuracy and real-time performance and is used in various fields, including the transportation field. In this study, to measure acceleration and spacing using YOLO, we developed a model that measures acceleration and spacing through changes in vehicle speed at each interval and the differences in the travel time between vehicles by setting the measurement intervals closely. It was confirmed that the range of acceleration and spacing is different depending on the traffic characteristics of each point, and a comparative analysis was performed according to the reference distance and screen angle to secure the measurement rate. The measurement interval was 20m, and the closer the angle was to a right angle, the higher the measurement rate. These results will contribute to the analysis of safety by intersection and the domestic vehicle behavior model.

The Effects of Cultural Factors in Tourists' Restaurant Satisfaction: Using Text Mining and Online Reviews (문화적 요인이 관광객의 음식점 만족도에 미치는 영향: 텍스트 마이닝과 온라인 리뷰를 활용하여)

  • Jiajia Meng;Gee-Woo Bock;Han-Min Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.145-164
    • /
    • 2023
  • The proliferation of online reviews on dining experiences has significantly affected consumers' choices of restaurants, especially overseas. Food quality, service, ambiance, and price have been identified as specific attributes for the choice of a restaurant in prior studies. In addition to these four representative attributes, cultural factors, which may also significantly impact the choice of a restaurant for tourists, in particular, have not received much attention in previous studies. This study employs the text mining technique to analyze over 10,000 online reviews of 76 Korean restaurants posted by Chinese tourists on dianping.com to explore the influence of cultural factors on the consumer's choice of restaurants in the overseas travel context. The findings reveal that "Hallyu (Korean Wave)" influences Chinese tourists' dining experiences in Korea and their satisfaction. Moreover, Korean food-related words, such as cold noodle, bibimbap, rice cake, pig trotters, and kimchi stew, appeared across all the review topics. Our findings contribute to the existing tourism and hospitality literature by identifying the critical role of cultural factors on consumers', especially tourists', satisfaction with the choice of a restaurant using text mining. The findings also provide practical guidance to restaurant owners in Korea to attract more Chinese tourists.

The Effect of Leisure Activities on Leisure Satisfaction and Job Satisfaction - Targeting Airline Cabin Crew Members - (여가활동이 여가 만족과 직무 만족에 미치는 영향 -항공사 객실승무원을 대상으로-)

  • JiSoo Kim;MinSu Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.123-138
    • /
    • 2024
  • This study aimed to examine the effects of leisure activities on leisure satisfaction and job satisfaction among airline cabin crew, as well as the mediating effect of leisure satisfaction. The context for this research was the sudden increase in air travel demand in 2022 following the COVID-19 economic recovery, which led to cabin crew members experiencing severe stress and fatigue due to excessive scheduling. To achieve this research objective, a self-administered online survey was conducted with 251 cabin crew members from domestic and international airlines, resulting in a total of 224 valid leisure satisfaction and job satisfaction, as well as the mediating effect of leisure satisfaction on the relationship between leisure activity types and job satisfaction. The hypothesis testing results revealed that all types of leisure activities, including family-oriented, friend-oriented, and work-related activities, had a significant positive effect on leisure satisfaction. Family-oriented and work-related leisure activities had a significant positive effect on job satisfaction, and leisure satisfaction had a significant positive effect on job satisfaction. Additionally, the mediation analysis confirmed that leisure satisfaction partially mediated the relationship between family-oriented and work-related leisure activities and job satisfaction, while it fully mediated the relationship between friend-oriented leisure activities and job satisfaction. Therefore, the study offers academic implications based on these findings and proposes strategies for utilizing various types of leisure activities to enhance leisure satisfaction and job satisfaction among airline cabin crew. It also suggests that future research should further validate these findings through methods such as the Delphi technique or Analytic Hierarchy Process (AHP) analysis to assess the importance and prioritization of these factors among relevant industry stakeholders.

A Stochastic User Equilibrium Transit Assignment Algorithm for Multiple User Classes (다계층을 고려한 대중교통 확률적사용자균형 알고리즘 개발)

  • Yu, Soon-Kyoung;Lim, Kang-Won;Lee, Young-Ihn;Lim, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.165-179
    • /
    • 2005
  • The object of this study is a development of a stochastic user equilibrium transit assignment algorithm for multiple user classes considering stochastic characteristics and heterogeneous attributes of passengers. The existing transit assignment algorithms have limits to attain realistic results because they assume a characteristic of passengers to be equal. Although one group with transit information and the other group without it have different trip patterns, the past studies could not explain the differences. For overcoming the problems, we use following methods. First, we apply a stochastic transit assignment model to obtain the difference of the perceived travel cost between passengers and apply a multiple user class assignment model to obtain the heterogeneous qualify of groups to get realistic results. Second, we assume that person trips have influence on the travel cost function in the development of model. Third, we use a C-logit model for solving IIA(independence of irrelevant alternatives) problems. According to repetition assigned trips and equivalent path cost have difference by each group and each path. The result comes close to stochastic user equilibrium and converging speed is very fast. The algorithm of this study is expected to make good use of evaluation tools in the transit policies by applying heterogeneous attributes and OD data.

User Behavior and Improvement for Kumgang Pine Eco-Forest in Uljin (울진금강송 생태숲의 이용자 행태분석과 개선방안)

  • Oh, Nam-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2008
  • The purpose of this study was to analyze the users' behaviors and to suggest development strategies in Uljin Kumgang pine tree(Pinus densiflora for. erecta) eco-forest(UKPEF), which is located in Kyeongbuk. The data were collected by interviewing 122 visitors to september 3 from august 29, 2007 with a constructed questionnaire. The results of the analysis are as follows. 1. The major visitors of UKPEF are male and the age between 20 to 30, the residents of the Uljin county with relatively high academic background. 2. The motive of visiting UKPEF is mainly by the beauty and taste of Kumgang pine tree and the condition of the forest. The visitors are mainly composed of family, not big group. 3. The visitors of UKPEF have obtained information about the Kumgang fine tree forest mainly from friends, not from the internet or travel agency. 4. The visitors of UKPEF pointed out lack of convenient facilities such as toilets and water-supply facilities. However, visitors are satisfied by the condition of the forest. 5. The visitors of UKPEF set a high value on Kumgang fine tree, So, more active marketing strategy about Uljin Kumgang pine tree has to be established. 6. The visitors of UKPEF are more satisfied by the Uljin Kumgang pine tree forest than expected. The development strategies of UKPEF are suggest as follows. (1) Auto tram system has to be set up and new trail should be constructed to attract more visitors and people of other regions. (2) To attract group tourists, new program should be developed. (3) Advertisement through internet or travel agency has to be developed. (4) Government(local) should make a plan to register the forest as World natural heritage. (5) Monitoring and evaluation system has to be developed to satisfy tourists. In conclusion, the efforts of taking care of and preserving the UKPEF should be made at the national level. I hope that more Koreans can have chance to feel and experience the value and excellence ofthe Uljin Kumgang pine tree(Pinus densiflora for. erecta)

Development of Loading Information System in Shin-Chon Region (하숙 정보 시스템 구축:신촌지역을 중심으로)

  • 이숙임;성효현;강애띠
    • Spatial Information Research
    • /
    • v.6 no.2
    • /
    • pp.133-152
    • /
    • 1998
  • This article considers the experimental foundations of geographical phenomena for the distribution of lodging houses and the development of lodging Information Systems in Shin-Chon Area. This system allows the rural students to find their lodging houses conveniently. We examine the geographical reality of lodging houses in Shin-chon area and explores the lodging information system, reflecting how students select the lodging houses. Criteria for selection of lodging houses are travel time to school, interior facilities, rent fee, members, owners of lodging houses, which are collected by field swvey. The lodging information system is built in integration of Visual Basic with spatial data which are created in Mapinfo and Arcview through MapObject, component GIS software. This system provide query tools to efficiently investigate data as well as interactive map display. Also it displays the characteristics of a selected lodging houses using the identify tool on the map.

  • PDF

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Study on Imputation Methods of Missing Real-Time Traffic Data (실시간 누락 교통자료의 대체기법에 관한 연구)

  • Jang Jin-hwan;Ryu Seung-ki;Moon Hak-yong;Byun Sang-cheal
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.45-52
    • /
    • 2004
  • There are many cities installing ITS(Intelligent Transportation Systems) and running TMC(Trafnc Management Center) to improve mobility and safety of roadway transportation by providing roadway information to drivers. There are many devices in ITS which collect real-time traffic data. We can obtain many valuable traffic data from the devices. But it's impossible to avoid missing traffic data for many reasons such as roadway condition, adversary weather, communication shutdown and problems of the devices itself. We couldn't do any secondary process such as travel time forecasting and other transportation related research due to the missing data. If we use the traffic data to produce AADT and DHV, essential data in roadway planning and design, We might get skewed data that could make big loss. Therefore, He study have explored some imputation techniques such as heuristic methods, regression model, EM algorithm and time-series analysis for the missing traffic volume data using some evaluating indices such as MAPE, RMSE, and Inequality coefficient. We could get the best result from time-series model generating 5.0$\%$, 0.03 and 110 as MAPE, Inequality coefficient and RMSE, respectively. Other techniques produce a little different results, but the results were very encouraging.

  • PDF

Study on Queue Length Estimation using GPS Trajectory Data (GPS 데이터를 이용한 대기행렬길이 산출에 관한 연구)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2016
  • Existing real-time signal control system was brought up typical problems which are supersaturated condition, point detection system and loop detection system. For that reason, the next generation signal control system of advanced form is required. Following thesis aimed at calculating queue length for the next generation signal control system to utilize basic parameter of signal control in crossing queue instead of the volume of real-time through traffic. Overflow saturated condition which was appeared as limit of existing system was focused to set-up range. Real-time location information of individual vehicle which is collected by GPS data. It converted into the coordinate to apply shock wave model with an linear equation that is extracted by regression model applied by a least square. Through the calculated queue length and link length by contrast, If queue length exceed the link, queue of downstream intersection is included as queue length that upstream queue vehicle is judeged as affecting downstream intersection. In result of operating correlation analysis among link travel time to judge confidence of extracted queue length, Both of links were shown over 0.9 values. It is appeared that both of links are highly correlated. Following research is significant using real-time data to calculate queue length and contributing to signal control system.