• Title/Summary/Keyword: Trap System

Search Result 309, Processing Time 0.027 seconds

The Experimental Research of LNT for 3L-DME Engine (3리터급 DME 엔진용 LNT 후처리 장치 연구)

  • Jang, Jinyoung;Lee, Youngjae;Pyo, Youngduk;Cho, Chongpyo;Woo, Youngmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.117-122
    • /
    • 2013
  • This study is aimed to develop LNT(Lean NOx Trap) aftertreatment system for DME engine. Modified DME engine, which was changed from diesel to current DME engine, is used for this research and is equipped with common rail type injector and fuel supplying system. LNT system has reductant injector. DME is also used as reduction agent. For this research, reduction agent injection time width and interval were varied. And also, swirler was used to improve homogeneity of reducing agent in exhaust pipe. The reduction rate of NOx by LNT was increased by longer injection width, short interval and swirler. The maximum diminution of NOx by LNT was over 85%.

Deadlock Analysis and Control of FMS's Using Siphon property (Siphon 특성을 이용한 FMS의 Deadlock 해석과 제어)

  • Kim, Jung-Chul;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.677-682
    • /
    • 2007
  • Concurrent competition for finite resources by multiple parts in flexible manufacturing systems(FMS's) and inappropriate initial marking or net structure of Petri net with share resources results in deadlock. This is an important issue to be addressed in the operation of the systems. Deadlock is a system state so that some working processes can never be finished. Deadlock situation is due to a wrong resource allocation policy. In fact, behind a deadlock problem there is a circular wait situation for a set of resources. Deadlock can disable an entire system and make automated operation impossible. Particularly, an unmanned system cannot recover from such a status and a set of jobs waits indefinitely for never-to-be-released resources. In this paper, we proposed a deadlock prevention method using siphon and trap of Petri net. It is based on potential deadlock which are siphon that eventually became empty. This method prevents the deadlock by the control of transition fire and initial marking in the Petri net. An given example of FMS is shown to illustrate our results with deadlock-free.

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

Investigation of Buffer Traps in AlGaN/GaN Heterostructure Field-Effect Transistors Using a Simple Test Structure

  • Jang, Seung Yup;Shin, Jong-Hoon;Hwang, Eu Jin;Choi, Hyo-Seung;Jeong, Hun;Song, Sang-Hun;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.478-483
    • /
    • 2014
  • We propose a new method which can extract the information about the electronic traps in the semi-insulating GaN buffer of AlGaN/GaN heterostructure field-effect transistors (HFETs) using a simple test structure. The proposed method has a merit in the easiness of fabricating the test structure. Moreover, the electric fields inside the test structure are very similar to those inside the actual transistor, so that we can extract the information of bulk traps which directly affect the current collapse behaviors of AlGaN/GaN HEFTs. By applying the proposed method to the GaN buffer structures with various unintentionally doped GaN channel thicknesses, we conclude that the incorporated carbon into the GaN back barrier layer is the dominant origin of the bulk trap which affects the current collapse behaviors of AlGaN/GaN HEFTs.

Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties (사중극자 유전영동 트랩에서의 입자의 동특성에 관한 연구)

  • Chandrasekaran, Nichith;Yi, Eunhui;Park, Jae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.845-851
    • /
    • 2014
  • Dielectrophoresis (DEP) is defined as the motion of suspended particles in solvent resulting from polarization forces induced by an inhomogeneous electric field. DEP has been utilized for various biological applications such as trapping, sorting, separation of cells, viruses, nanoparticles. However, the analysis of DEP trapping has mostly employed the period-averaged ponderomotive forces while the dynamic features of DEP trapping have not been attracted because the target object is relatively large. Such approach is not appropriate for the nanoscale analysis in which the size of object is considerably small. In this study, we thoroughly investigate the dynamic response of trapping to various system parameters and its influence on the trapping stability. The effects of particle conductivity on its motion are also focused.

A Study on the Characteristics of Pressure Drop and Regeneration of a Porous Seramic Pellet Filter for Diesel Particulate Trap (다공성 세라믹 펠렛을 포집재로 사용하느 매연여과장치의 배압 및 재생 특성에 관한 연구)

  • Kim, Hong-Suk;Cho, Guy-Back;Kim, Jin-Hyun;Jeong, Young-Il;Jeong, In-Su;Park, Jai-Koo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Diesel particulate trap is a core technology for the reduction of PM from diesel vehicles This study presents the features and the characteristics of DPF system when using pellet type filters. In comparison with wall-flow filter, the pellet filter has the advantages of cracking free during regeneration and shape flexibility. Experiments are conducted in a test bench simulated as diesel engine exhaust condition. Pressure drop and particle loading rate was compared by using two pellet filters having the porosity of 70% and 0%. Also its regeneration was tested.

  • PDF

How to cope with the Spaghetti Trap of multiple FTAs effectively (다양한 형태의 FTA 체결에 따른 Spaghetti Trap에 대한 효율적 대응방안)

  • Choi, Chang-Hwan
    • International Commerce and Information Review
    • /
    • v.12 no.4
    • /
    • pp.509-535
    • /
    • 2010
  • This paper examines the Spaghetti bowl effect that different tariffs and rules of origin in multiple FTAs have resulted in increasing the significantly additional burden for business when it comes to apply for the use of FTA preference. The wide spread of FTAs in the several years, from 2003 to 2010, has been the most important trade policy development in economically important Korea. Korea presently has 5 FTAs in effect, and made 3 additional agreements which will be expected to take effect in next year. With the study result and expecting a growing number of FTAs in Korea in a next decade, the international trading firms will face rise of transaction costs for enterprises, particularly small- and medium-sized enterprises(SMEs) to cope with multiple tariffs and rule of origins in FTAs. To help mitigate negative effects and facilitate a more SEMs to use the FTA preference, providing new computer programs system, increasing the awareness of FTA provisions, improving business participation in FTA consultations, and SME support in light of education, and financial support are needed.

  • PDF

High Resolution Photonic Force Microscope Using Resonance Energy Transfer

  • Heo, Seung-Jin;Kim, Ki-Pom;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.288-288
    • /
    • 2010
  • Photonic Force Microscope (PFM) is a scanning force microscope using an optical trap with several piconewton. In PFM, we can have topological information from the bead position trapped in optical trap. Typically the resolutions of lateral and vertical position are 40 nm and 50 nm respectively. To improve the vertical resolution below 10 nm, we use resonance energy transfer which has 5nm resolution in distance. Here we show preliminary results, including performances of scanning bead and fluorescence imaging system.

  • PDF

Noise Modeling and Performance Evaluation in Nanoscale MOSFETs (나노 MOSFETs의 노이즈 모델링 및 성능 평가)

  • Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.82-87
    • /
    • 2020
  • The comprehensive and physics-based compact noise models for advanced CMOS devices were presented. The models incorporate important physical effects in nanoscale MOSFETs, such as the low frequency correlation effect between the drain and the gate, the trap-related phenomena, and QM (quantum mechanical) effects in the inversion layer. The drain current noise model was improved by including the tunneling assisted-thermally activated process, the realistic trap distribution, the parasitic resistance, and mobility degradation. The expression of correlation coefficient was analytically described, enabling the overall noise performance to be evaluated. With the consideration of QM effects, the comprehensive low frequency noise performance was simulated over the entire bias range.