• Title/Summary/Keyword: Transverse steel ratio

Search Result 195, Processing Time 0.022 seconds

Confinement Effects of High-Strength Reinforced Concrete Tied Columns

  • Han, Byum-Seok;Shin, Sung-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.133-142
    • /
    • 2006
  • An experimental study was conducted to investigate the effectiveness of transverse steel in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns($260{\times}260{\times}1,200mm$) were tested. Effects of such main variables as concrete compressive strength, configurations of transverse steel, transverse reinforcement ratio, spacing of transverse steel, and spalling of concrete cover were investigated. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse steel that can provide sufficiently high lateral confinement pressure. A consistent decrease in the deformability of the column test specimens was observed with increasing concrete strength. Test results of this study were compared with existing confinement models of modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi. The comparison indicates many existing models to predict the behavior of confined concrete overestimate or underestimate the ductility of confined concrete.

Seismic Performance and Flexural Over-strength of Circular RC Column (원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.49-58
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. Test specimens were designed with 4.5 aspect ratio. The selected test variables are longitudinal steel ratio, transverse steel ratio, yielding strength of longitudinal steel and axial load ratio. The test results of columns with different longitudinal steel ratio, transverse steel ratio and axial load ratio showed different seismic performance such as equivalent damping ratio, residual displacement and effective stiffness. It was found that the column with low strength of longitudinal steel showed significantly reduced seismic performance, especially for equivalent damping ratio and residual displacement. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications (Limited state design).

Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube (강관 내무보강 중공교각의 연성도 평가)

  • 강영종;최진유;김도연;한택희
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

Aseismatic Performance Analysis of Circular RC Bridge Piers II. Suggestion for Transverse Steel Ratio (원형 철근콘크리트 교각의 내진성능 II. 심부구속철근비 제안)

  • Park Chang-Kyu;Lee Dae-Hyoung;Lee Beom-Gi;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.775-784
    • /
    • 2005
  • In this research, major design factors have been evaluated for the establishment of the rational seismic design code of circular RC(reinforced concrete) bridge pier Previous experimental researches have drawn a conclusion that transverse confinement reinforcements have been excessively used for RC bridge piers in Korea. Thus, the objective of this study is to propose a rational design equation for transverse reinforcements of RC bridge piers in Korea which would be classified as a low or moderate seismic region. Newly proposed equation further considers the effect of the axial force ratio and the longitudinal steel ratio. Minimum transverse confinement steel ratio is also proposed to avoid probable buckling of the longitudinal reinforcing steels subjected to relatively low axial force. It is thought that these new codes seem to alleviate the rebar congestion in the plastic hinge region of RC bridge piers which contribute to the enhancement of constructibility and economization for RC bridge construction.

Effect of Longitudinal Steel Ratio on Behavior of CRCP System (연속철근콘크리트 도로포장의 거동에 종방향 철근비가 미치는 영향)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.58-61
    • /
    • 2006
  • The effect of the steel ratio on the behavior of continuously reinforced concrete pavement (CRCP) under moving wheel loads and environmental loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered: (1) to evaluate the load transfer efficiency (LTE) at transverse cracks; (2) to investigate strains in CRCP when the system is subjected to moving vehicle loads; (3) and to investigate the time histories of the crack spacing variations. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests. The strains in the concrete slab and the bond braker layer under moving vehicle loads were obtained using embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio. However, the changes in the crack spacings are affected by the steel ratio.

  • PDF

Analytical Study on the Amount of Transverse Steel in Square Reinforced Concrete Columns. (장방형 철근 콘크리트 기둥의 띠철근량에 관한 해석적 연구)

  • 이리형;김성수;이용택;김승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.453-458
    • /
    • 1996
  • In reinforced concrete structure, it is very important to secure ductile performance of column because the columns become brittle failure and cause the collapse of an entire structure and the damage of human life. This study is intending to seek the quantity of transverse steels in square reinforced concrete columns which is derived from moment-curvature analysis of cross section about various arrangements of transverse steel and the ratio of axial force and to propose the design method to secure the sufficient ductile behavior subjected to complex loading.

  • PDF

Material Characterization of Weld-Zone Using Poisson's Ratio Distribution

  • Park, Jin-Ha;Kim, Young-H.;Lee, Seung-S.;Kim, Young-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.586-590
    • /
    • 2009
  • Poisson's ratio, one of elastic constants of elastic solids, has not attracted attention due to its narrow range and difficult measurement. Transverse wave velocity as well as longitudinal wave velocity should be measured for nondestructive measurement of Poisson's ratio. Rigid couplants for transverse wave is one of obstacle for scanning over specimen. In the present work, a novel measurement of Poisson's ratio distribution was applied. Immersion method was employed for the scanning over the specimen. Echo signals of normal beam longitudinal wave were collected, and transverse wave modes generated by mode conversion were identified. From transit time of longitudinal and transverse waves, Poisson's ratio was determined without the information of specimen thickness. Poisson's ratio distribution of the carbon steel weldment was mapped. Heat affected zone of the weldment was clearly distinguished from base and filler metals.

Poisson's Ratio Scanning Using Immersion Ultrasonic Testing

  • Oh, Seo-Young;Kim, Young-H.;Shin, Yo-Sub;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.519-523
    • /
    • 2008
  • Poisson's ratio is one of elastic constants of elastic solids. However, it has not attracted attention due to its narrow range and difficult measurement. Transverse wave velocity as well as longitudinal wave velocity should be measured for nondestructive measurement of Poisson's ratio. Hard couplant for transverse wave prevents transducer from scanning over specimen. In the present work, a novel measurement of Poisson's ratio distribution was proposed. Immersion method was employed for the scanning over the specimen. Echo signals of normal beam longitudinal wave were collected. Transverse wave modes generated by mode conversion were identified. From transit time of longitudinal and transverse waves, Poisson's ratio can be determined without information of specimen thickness. This technique was demonstrated for aluminum and steel specimens.

Hysteric Behavior of Ultra-High Strength RC Columns (초고강도 RC 기둥의 이력특성에 관한 실험적 연구)

  • Kim Jong Keun;Ahn Jong Mun;Han Beom Seok;Shin Sung Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.31-34
    • /
    • 2005
  • An experimental investigation was conducted to examine the hysteric behavior of Ultra-High strength concrete columns for the requirement of ACI provision. Seven 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300\times300mm$ and the shear span ratio 4. The main variables are axial load ratio, configuration and volumetric ratio of transverse reinforcement. It has been found that the behavior of columns was affected by axial load ratio rather than the amount and the configuration of transverse reinforcement. Consequently, to secure the ductile behavior of 100MPa Ultra-High strength concrete columns, ACI provision for the requirement of transverse steel may considered axial level and the detail of transverse reinforcement.

  • PDF

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.