• 제목/요약/키워드: Transverse plane

검색결과 425건 처리시간 0.021초

적층판의 원통형 굽힘에 대한 횡방향 전단병형 (Transverse Shear Deformation in the Cylindrical Bending of Laminated Plates)

  • 이수용;박정선
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2696-2704
    • /
    • 2000
  • This paper presents a new laminated plate theory for the cylindrical bending of laminated plated. The theory assumes that in plane displacements vary exponentially through plate thickness. Analytical solutions are derived for simply supported plates subjected to transverse loading. The accuracy of the present theory is examined for unsymmetric laminates, and the numerical results are compared with three-dimensional elasticity solutions of Pagano. The present theory predicts displacements and stresses for very thick plates very accurately. In particular, transverse shear stresses obtained form constitutive equations are predicted very accurately.

단일방향 $90^{\circ}$적층 보의 횡전단응력이 진도감쇠에 미치는 효과 (The Significance of Transverse Shear on Vibration Damping of 90-degree Unidirectional Laminated Composites)

  • 임종휘
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.57-63
    • /
    • 2000
  • On the basis of the concept of strain energy-weighted dissipation, an enhanced model for predicting damping in laminates is presented. In this model, the influence of transverse shear on $90^{\circ}$ laminates has been included with those of in-plane stresses on beam. Also, an experimental damping measurement is conducted with changing the length and the thickness of laminated beam specimen for confirmation of the model prediction. The theoretical predictions in $90^{\circ}$laminates were reasonably compared with experimental data. The transverse shear reveals to have an influence on the damping, behavior in $90^{\circ}$ laminates.

  • PDF

Inelastic Out-of-plane Design of Parabolic Arches

  • Moon, Jiho
    • International Journal of Railway
    • /
    • 제8권2호
    • /
    • pp.46-49
    • /
    • 2015
  • In this paper, improved out-of-plane design of parabolic arches was proposed based on the current design code. The arches resist general loading by a combination of axial compression and bending actions, and the interaction formula between two extreme cases of axial and bending actions is generally used for the design. Firstly, the out-of-plane buckling strength of arches in a pure axial compression and a pure bending were studied. Then, out-of-plane design of parabolic aches under general transverse loading was investigated. From the results, it can be found that the proposed design equations provided good prediction of out-of-plane strength for parabolic arches which satisfy the thresholds for deep arches, while proposed design equations overestimated the buckling load of shallow arches.

Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory

  • Kheirikhah, M.M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.15-34
    • /
    • 2012
  • In the present paper, an improved high-order theory is used for bending analysis of soft-core sandwich plates. Third-order plate assumptions are used for face sheets and quadratic and cubic functions are assumed for transverse and in-plane displacements of the orthotropic soft core. Continuity conditions for transverse shear stresses at the interfaces as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the plate are satisfied. Also, transverse flexibility and transverse normal strain and stress of the orthotropic core are considered. The equations of motion and boundary conditions are derived by principle of minimum potential energy. Analytical solution for bending analysis of simply supported sandwich plates under various transverse loads are presented using Navier's solution. Comparison of the present results with those of the three-dimensional theory of elasticity and some plate theories in the literature confirms the accuracy of the proposed theory.

Mandibular midline osteotomy for correction of bimaxillary transverse discrepancy: a technical note

  • Mrunalini Ramanathan;Rie Sonoyama-Osako;Yukiho Shimamura;Taro Okui;Takahiro Kanno
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제49권3호
    • /
    • pp.107-113
    • /
    • 2023
  • Bimaxillary transverse width discrepancies are commonly encountered among patients with dentofacial deformities. Skeletal discrepancies should be diagnosed and managed appropriately with possible surgical corrections. Transverse width deficiencies can present in varieties of combinations involving the maxilla and mandible. We observed that in a significant proportion of cases, the maxilla is normal, and the mandible showed deficiency in the transverse dimension after pre-surgical orthodontics. We designed novel osteotomy techniques to enhance mandibular transverse width correction, as well as simultaneous genioplasty. Chin repositioning along any plane is applicable concomitant with mandibular midline arch widening. When there is a requirement for larger widening, gonial angle reduction may be necessary. This technical note focuses on key points in management of patients with transversely deficient mandible and the factors affecting the outcome and stability. Further research on the maximum amount of stable widening will be conducted. We believe that developing evidence-based additional modifications to existing conventional surgical procedures can aid precise correction of complex dentofacial deformities.

Analysis of laminated composite plates based on different shear deformation plate theories

  • Tanzadeh, Hojat;Amoushahi, Hossein
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.247-269
    • /
    • 2020
  • A finite strip formulation was developed for buckling and free vibration analysis of laminated composite plates based on different shear deformation plate theories. The different shear deformation theories such as Zigzag higher order, Refined Plate Theory (RPT) and other higher order plate theories by variation of transverse shear strains through plate thickness in the parabolic form, sine and exponential were adopted here. The two loaded opposite edges of the plate were assumed to be simply supported and remaining edges were assumed to have arbitrary boundary conditions. The polynomial shape functions are applied to assess the in-plane and out-of-plane deflection and rotation of the normal cross-section of plates in the transverse direction. The finite strip procedure based on the virtual work principle was applied to derive the stiffness, geometric and mass matrices. Numerical results were obtained based on various shear deformation plate theories to verify the proposed formulation. The effects of length to thickness ratios, modulus ratios, boundary conditions, the number of layers and fiber orientation of cross-ply and angle-ply laminates were determined. The additional results on the same effects in the interaction of biaxial in-plane loadings on the critical buckling load were determined as well.

원통형 굽힘을 받는 적층판의 임계좌굴 하중 (Critical Buckling Loads of Laminated Composites under Cylindrical Bending)

  • 이수용
    • 항공우주시스템공학회지
    • /
    • 제1권4호
    • /
    • pp.28-36
    • /
    • 2007
  • This paper presents critical buckling loads of laminated composites under cylindrical bending. In-plane displacements are assumed to vary exponentially through plate thickness. The accuracy of this theory is examined for symmetric/antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical bending. Analytical solutions are provided to investigate the effect of transverse shear deformation on critical buckling loads of the laminated plates, and the results are compared with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory.

  • PDF

Transient response of rhombic laminates

  • Anish, Anish;Chaubey, Abhay K.;Vishwakarma, Satyam;Kumar, Ajay;Fic, Stanislaw;Barnat-Hunek, Danuta
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.551-562
    • /
    • 2019
  • In the present study, a suitable mathematical model considering parabolic transverse shear strains for dynamic analysis of laminated composite skew plates under different types of impulse and spatial loads was presented for the first time. The proposed mathematical model satisfies zero transverse shear strain at the top and bottom of the plate. On the basis of the cubic variation of thickness coordinate in in-plane displacement fields of the present mathematical model, a 2D finite element (FE) model was developed including skew transformations in the mathematical model. No shear correction factor is required in the present formulation and damping effect was also incorporated. This is the first FE implementation considering a cubic variation of thickness coordinate in in-plane displacement fields including skew transformations to solve the forced vibration problem of composite skew plates. The effect of transverse shear and rotary inertia was incorporated in the present model. The Newmark-${\beta}$ scheme was adapted to perform time integration from step to step. The $C^0$ FE formulation was implemented to overcome the problem of $C^1$ continuity associated with the cubic variation of thickness coordinate in in-plane displacement fields. The numerical studies showed that the present 2D FE model predicts the result close to the analytical results. Many new results varying different parameter such as skew angles, boundary conditions, etc. were presented.

유한요소해석을 이용한 다층 FCA 맞대기 용접부의 횡 방향 잔류응력 평가에 관한 연구 (A Study on the Evaluation of Transverse Residual Stress at the Multi-pass FCA Butt Weldment using FEA)

  • 신상범;이동주;박동환
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.26-32
    • /
    • 2010
  • The purpose of this study is to evaluate the residual stresses at the multi-pass FCA weldment using the finite element analysis (FEA). In order to do it, an H-type specimen was selected as a test specimen. The variable used was in-plane restraint intensity. The temperature distribution at the multi-pass FCA butt weldment was evaluated in accordance with the relevant guidance recommended by the KWJS. The effective conductivity for the weld metal corresponding to each welding pass was introduced to control the maximum temperature below the vaporization temperature of weld metal. The heat flux caused by welding arc was assumed to be applied to the weld metal corresponding to welding pass. With heat transfer analysis results, the distribution of transverse residual stresses was evaluated using the thermo-mechanical analysis and compared with the measured results by XRD and uniaxial strain gage. In thermo-mechanical analysis, the plastic strain resetting at the temperature above melting temperature of $1450^{\circ}C$ was considered and the weld metal and base metal was assumed to be bilinear kinematics hardening continuum. According to the comparison between FEA and experiment, transverse residual stresses at the multi-pass FCA butt weldment obtained by FEA had a good agreement with the measured results, regardless of in-plane rigidity. Based on the results, it was concluded that thermo-mechanical FE analysis based on temperature distribution calculated in accordance with the KWJS’s guidance could be used as a tool to predict the distribution of residual stress of the multi-pass FCA butt weldment.

진행축에 수직방향 압력구배를 받는 난류 평면제트의 수치적 연구 (Numerical study of a turbulent plane jet under the pressure gradient in the transverse direction)

  • 최문창;최도형
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1150-1157
    • /
    • 1988
  • 본 연구에서는 수치계산을 통해 진행하는 방향에 수직으로 일정한 압력구배를 받는 2차원 난류 자유제트의 발달을 고려해 보고자 한다.속도장을 구한 후에는 제 트의 온도가 주위온도 보다 높을 경우와 또 제트를 사이에 둔 양쪽 유체에 온도차가 있을때의 열확산 특성도 함께 알아보려는 것이다. 수직 방향으로 압력구배가 있는 유동장은 최근 활발히 연구가 진행되는 분야인 제트축에 수직방향으로 주위유동이 있 는 경우와 흡사하며 제트를 통한 열확산현상은 air curtain등 실제 응용도가 큼에도 불구하고 문헌에 보고된 것이 별로 없는 것으로 보여진다.