• Title/Summary/Keyword: Transverse plane

Search Result 425, Processing Time 0.023 seconds

Gait Analysis of Patients with Tumor Prosthesis around the Knee (인공 종양대치물을 이용한 사지구제술후의 보행 분석)

  • Lee, Sang-Hoon;Chung, Chin-Youb;Kim, Han-Soo;Kim, Byung-Sung;Lee, Han-Koo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1997
  • Prosthetic replacement is one of the most common methods of reconstruction after resection of malignant tumor around the knee. Gait analysis provides a relative objective data about the gait function of patients with prosthesis. The purpose of this study was to compare the gait pattern of the patients who underwent limb salvage surgery with prosthesis for distal femur and that of patients with prosthesis for proximal tibia. This study included ten patients (4 males, 6 females, mean age 22.7 years, range 14-36) who underwent a wide resection and Kotz hinged modular reconstruction prosthesis replacement and six normal adult(Control). The site of bone tumor was the distal femur (Group 1) in six patients and proximal tibia (Group 2) in 4 patients. The follow-up period ranged from 15 to 82 months (mean : 33 months). The evaluation consisted of clinical assessment, radiographic assessment, gait analysis using VICON 370 Motion Analysis System. The gait analysis included the linear parameters such as, walking velocity, cadence, step length, stride length, stance time, swing time, single support and double support time and the three-dimensional kinematics (joint rotation angle, velocity of joint rotation) of ankle, knee, hip and pelvis in sagittal, coronal and transverse plane. For the kinetic evaluation, the moment of force (unit: Nm/kg) and power (unit: Watt/kg) of ankle, knee and hip joint in sagittal, coronal and transverse plane. In the linear parameters, cadence, velocity, step time and single support were decreased in both group 1 and group 2 compared with control. Double support decreased in group 2 compared with control significantly(p<.05). In contrast to our hypothesis, there was no significant difference between group 1 and group 2. In Kinematics, we observed significant difference (p<.05) of decreased knee flexion in loading response (G2

  • PDF

A Numerical Analysis on the Diaphragm Structures for Improving Fatigue Performance in Orthotropic Steel Decks (강바닥판의 피로성능 향상을 위한 다이아프램 구조상세)

  • Shin, Jae Choul;An, Zu Og;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.559-573
    • /
    • 2007
  • Orthotropic steel decks are manufactured by welding thin plates therefore it is inevitable that there are abundant works of welding process. On connection of transverse rib web, crossing point of longitudinal rib, transverse rib and deck plate and cut-out parts of transverse rib are the significant position of stress concentration because of out of plane and oil-canning deformation caused by longitudinal rib distortion with shear force and distortion. At the current research, the crossing point where the orthotropic steel decks's effect of improving fatigue performance are high, not placing scallop and diaphragm which have same plane with transverse rib placed inside of longitudinal rib at the same time, the reduce effects of stress concentration at the cut-out section and the crossing are high. Especially the installation of the diaphragm causing great effects based on research results to stress concentration appearance reduce effects at the cut-out section, putting radius of curvature of the diaphragm's top and bottom as a target, as a result of carrying out the parametric analysis an optimal diaphragm form that has great effects in fatigue performance came to a conclusion. Also based on optimal diaphragm form, an advantage of the diaphragm optimal setting position for improvement of the fatigue performance came to a conclusion.

Use of an anatomical mid-sagittal plane for 3-dimensional cephalometry: A preliminary study

  • Vernucci, Roberto Antonio;Aghazada, Huseynagha;Gardini, Kelly;Fegatelli, Danilo Alunni;Barbato, Ersilia;Galluccio, Gabriella;Silvestri, Alessandro
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.159-169
    • /
    • 2019
  • Purpose: Cone-beam computed tomography (CBCT) is widely used for 3-dimensional assessments of cranio-maxillo-facial relationships, especially in patients undergoing orthognathic surgery. We have introduced, for reference in CBCT cephalometry, an anatomical mid-sagittal plane (MSP) identified by the nasion, the midpoint between the posterior clinoid processes of the sella turcica, and the basion. The MSP is an updated version of the median plane previously used at our institution for 2D posterior-anterior cephalometry. This study was conducted to test the accuracy of the CBCT measures compared to those obtained using standard posterior-anterior cephalometry. Materials and Methods: Two operators measured the inter-zygomatic distance on 15 CBCT scans using the MSP as a reference plane, and the CBCT measurements were compared with measurements made on patients' posterior-anterior cephalograms. The statistical analysis evaluated the absolute and percentage differences between the 3D and 2D measurements. Results: As demonstrated by the absolute mean difference (roughly 1 mm) and the percentage difference (less than 3%), the MSP showed good accuracy on CBCT compared to the 2D plane, especially for measurements of the left side. However, the CBCT measurements showed a high standard deviation, indicating major variability and low precision. Conclusion: The anatomical MSP can be used as a reliable reference plane for transverse measurements in 3D cephalometry in cases of symmetrical or asymmetrical malocclusion. In patients who suffer from distortions of the skull base, the identification of landmarks might be difficult and the MSP could be unreliable. Becoming familiar with the relevant software could reduce errors and improve reliability.

Progressive failure of symmetric laminates under in-plane shear: Il-Negative shear

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.757-772
    • /
    • 1998
  • The objective of the present work is to estimate the strength and failure characteristics of symmetric thin square laminates under negative shear load. Two progressive failure analyses, one using the Hashin criterion and the other using a Tensor polynomial criterion, are used in conjunction with the finite element method. First-order shear-deformation theory along with geometric nonlinearity in the von Karman sense has been incorporated in the finite element modeling. Failure loads, associated maximum transverse displacements, locations and modes of failure including the onset of delamination are discussed in detail; these are found to be quite different from those for the positive sheer load reported in Part I of this study (Singh et al. 1998).

Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results

  • Papa, Enrico;Corigliano, Alberto;Rizzi, Egidio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.169-188
    • /
    • 2001
  • This note presents the main results of an experimental investigation into the mechanical behaviour of a composite sandwich conceived as a lightweight material for naval engineering applications. The sandwich structure is formed by a three-dimensional glass fibre/polymer matrix fabric with transverse piles interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional Glass Fibre Reinforced Plastics extra-skins are laminated on the external facings of the filled fabric. The main features of the experimental tests on syntactic foam, skins and sandwich panels are presented and discussed, with focus on both in-plane and out-of-plane responses. This work is part of a broader research investigation aimed at a complete characterisation, both experimental and numerical, of the complex mechanical behaviour of this composite sandwich.

Dynamic Stability Analysis of a Spinning Disk with Angular Acceleration by Using the Uncoupled Governing Equations (비연성된 지배방정식을 이용한 각가속도를 갖는 회전원판의 동적 안정성 해석)

  • Choe, Tae-Yeong;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1363-1370
    • /
    • 2000
  • Dynamic stability of a flexible spinning disk with angular acceleration is considered. To avoid the coupling between the in-plane and out-of-plane displacements, the linearized strain-displacement relations are used in the Kirchhoff plate theory. The uncoupled governing equations are derived by using Hamilton's principle with considering the angular acceleration. Numerical tests show that existence of the angular acceleration makes a spinning disk dynamically unstable.

In-Plane Vibration Analysis of Asymmetric Curved Beams Using DQM (DQM을 이용한 비대칭 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2734-2740
    • /
    • 2010
  • The free in-plane vibration of asymmetric circular curved beams with varying cross-section is analyzed by the differential quadrature method (DQM) neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and boundary conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives the good accuracy even with a small number of grid points.

Comparative dynamic studies of thick laminated composite shells based on higher-order theories

  • Ganapathi, M.;Patel, B.P.;Pawargi, D.S.;Patel, H.G.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.695-711
    • /
    • 2002
  • Here, the dynamic response characteristics of thick cross-ply laminated composite cylindrical shells are studied using a higher-order displacement model. The formulation accounts for the nonlinear variation of the in-plane and transverse displacements through the thickness, and abrupt discontinuity in slope of the in-plane displacements at any interface. The effect of inplane and rotary inertia terms is included. The analysis is carried out using finite element approach. The influences of various terms in the higher-order displacement field on the free vibrations, and transient dynamic response characteristics of cylindrical composite shells subjected to thermal and mechanical loads are analyzed.

Vibraion Damping Analysis in $90^0$ Laminated Beam Considering the Effect of Interlaminar Stess (층간응력의 효과를 고려한 단일방향 900복합재 적층보의 진동감쇠 해석)

  • Im, Jong-Hwi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1261-1270
    • /
    • 2000
  • This paper is concerned with the development of a general model for predicting material damping in laminates based on the strain energy method. In this model, the effect of interlaminar stress on damping is taken into accounts along with those of in-plane extension/compression and in-plane shear. The model was verified by carrying out the damping measurements on $90^0$ unidirectional composite beams varying length and thickness. The analytical predictions were favorably compared with the experimental data. The transverse shear($$\sigma$_{yz}$) appears to have a considerable influence on the damping behaviors in $90^0$ unidirectional polymer composites. However, the other interlaminar stresses($$\sigma$_{xz}$, $$\sigma$_z$) were shown to have little impact on vibration damping in $90^0$ laminated composite beam.

Buckling of plates including effect of shear deformations: a hyperelastic formulation

  • Musa, Idris A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1107-1124
    • /
    • 2016
  • Consistent finite strain Plate constitutive relations are derived based on a hyperelastic formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has been expressed in term of a deformation tensor associated with the deformation and stretches of an embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under uni-axial compression force are presented.