• Title/Summary/Keyword: Transverse bar

Search Result 108, Processing Time 0.023 seconds

Applicability of Current Design Code to Class B Splice of SD600 Re-Bars (SD600 철근의 B급 겹침 이음에 대한 현행설계기준의 적용성)

  • Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.449-459
    • /
    • 2011
  • An experimental study was performed to evaluate the applicability of current design code to the class B splice of SD600 reinforcing bars. Twelve simply supported beam and slab specimens with re-bar splices were tested under monotonic loading. Parameters for this test were re-bar diameter, concrete cover thickness, concrete strength, and stirrup spacing. Concrete strengths ranged 24.7~55.3 MPa. Most of the specimens were designed to satisfy the class B splice length specified by current design code. Average bar stresses resulting from this test were compared with the predictions by the KCI code provisions. Based on the result, the applicability of the current design code to SD600 re-bars were evaluated. The re-bar splices gave satisfactory performance for all D13 re-bar splices and for D22 and D32 splices with transverse reinforcement. On the basis of the test result, for D22 and the greater diameter bars, the use of either transverse reinforcement of the thicker concrete cover was recommended.

Proposed Design Provisions for Development Length Considering Effects of Confinement

  • Choi, Oan-Chul;Kim, Byoung-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.49-54
    • /
    • 2006
  • Confinement is major contribution to bond strength between reinforcement steel bars and concrete. Cover thickness, bar spacing and transverse reinforcement are the key confinement factors of current provisions for the development and splices of reinforcement. However, current provisions are still too complicated to determine the values of the confinement, which need to be well delineated in the process of design. In this study, an experimental work using beam-end and splice specimens was performed to examine the effect of concrete cover on bond strength. The results of this experiment and previously available data are analyzed to identify the effects of confinement on bond strength. From this reevaluation, new provisions for the development and splices of reinforcement are proposed. The provisions suggest some limitations in the confinement index. The new provisions will allow the engineers to use a simple and yet satisfactory and appropriate method or a precise approach for design to determine the values of confinement on the calculation of development and splice lengths.

Cyclic behavior of connection between footing and concrete-infilled composite PHC pile

  • Bang, Jin-Wook;Hyun, Jung Hwan;Lee, Bang Yeon;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.741-754
    • /
    • 2014
  • The conventional PHC pile-footing connection is the weak part because the surface area and stiffness are sharply changed. The Composite PHC pile reinforced with the transverse shear reinforcing bars and infilled-concrete, hereafter ICP pile, has been developed for improving the flexural and shear performance. This paper investigates the cyclic behavior and performance of the ICP pile-footing connection. To investigate the behavior of the connection, one PHC and two ICP specimens were manufactured and then a series of cyclic loading tests were performed. From the test results, it was found that the ICP pile-footing connection exhibited higher cyclic behavior and connection performance compared to the conventional PHC pile-footing connection in terms of ductility ratio, stiffness degradation and energy dissipation capacity.

Deformation-based Strut-and-Tie Model for flexural members subject to transverse loading

  • Hong, Sung-Gul;Lee, Soo-Gon;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1213-1234
    • /
    • 2016
  • This paper describes a deformation-based strut-and-tie model for the flexural members at post-yield state. Boundary deformation conditions by flexural post-yield response are chosen in terms of the flexural bar strains as the main factor influenced on the shear strength. The main purpose of the proposed model is to predict the shear capacities of the flexural members associated with the given flexural deformation conditions. To verify the proposed strut-and-tie model, the estimated shear strengths depending on the flexural deformation are compared with the experimental results. The experimental data are in good agreement with the values obtained by the proposed model.

A New All-optical Flip-flop Based on Absorption Nulls of an Injection-locked FP-LD

  • Lee, Hyuek Jae
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • A new all-optical flip-flop (AOFF) method based on the absorption nulls of an injection-locked Fabry-Perot laser diode (FP-LD) in transverse magnetic (TM) mode is proposed and experimentally demonstrated. For the set and reset operations of the AOFF, injection locking and the destructive minus of beating in transverse electric (TE) mode are used. The absorption nulls on the TM mode are modulated according to the operations, and then non-inverted (Q) and inverted (${\bar{Q}}$) outputs can be obtained simultaneously. Thanks to the use of several absorption nulls, the proposed AOFF can achieve multiple outputs with extinction ratios of more than 15 dB. Even though the experiment is demonstrated at 100 Mbit/s, the results of previous experiments using the injection of a CW holding beam imply that the operation speed can increase to 10 Gbit/s.

Seismic Performance of High-Strength Concrete Columns

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Kim Sun-Woo;Han Min-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.41-44
    • /
    • 2004
  • This experimental investigation was conducted to examine the behaviour of eight one-third scale columns made of high-strength concrete (HSC). The columns were subjected to a constant axial load corresponding to 30 per cent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength. Columns with 42 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. Relationships between the calculated damage index and the observed damage such as initial crack, spalling of concrete, buckling of longitudinal bar, and crushing of concrete are propose.

  • PDF

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

Thermal Stability Analysis of 2-D Spacecraft Appendage (위성체 2-D 구조물의 열 안정성 해석)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.99-104
    • /
    • 2001
  • Thermally induced vibration response of solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

  • PDF

Cracking Behavior of Steel-Concrete Composite Girders at Negative Moment Region (합성거더 부모멘트부의 균열거동 평가)

  • Youn, Seok-Goo;Seol, Dae-Ho;Ryu, Hyung-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • Inner support regions of continuous steel and concrete composite bridge decks, transverse crackings are easely developed by tensile forces due to live loads and primary and secondary effects of concrete shrinkage. Since these cracks have an influence on the durability of bridge decks, crack width should be controlled within allowable limit values. Although crack width is a function of steel stress, bar diameter, bar spacing, etc, the current code for the amount of longitudinal reinforcements provides only one value of 2 percent of the concrete area. In order to investigate cracking bahaviors of composite girders with the variation of the longitudinal steel ratios, negative flexural tests are conducted on five composite girders and crack width and crack spacing are compared to ACI Code and Eurocode. Based on the test results, it is discussed the suitability of the current code for the longitudinal steel ratio.

  • PDF

The Strength of Concentrically Loaded R/C Columns with Various Hoop Anchor Types (중심축력을 받는 R/C기둥의 횡보강근 정착형태에 따른 내력에 관한 연구)

  • Lee Woo-Jin;Kim Min-Soo;Lee Dae-kyo;Seo Soo-Yeon;Yoon Seung-Joe
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.67-70
    • /
    • 2005
  • In this study, an experimental investigation of the strength of R/C columns with 300mm square sections confined by head anchorage bar is presented. This initial phase of research considers only axial loading and consists of a total of 7 column tests. The main variables are distance and anchorage type of transverse reinforcement such as standard hooks and headed bar. The purpose of this study is to investigate the confinement effect and strength increment by head and to propose the confinement model for column using the head at end of lateral tie. Also, the test results for ultimate strength and strength gain factor of columns in this study and previous study is compared with the existing analytical models. Based on the test results, the Saatcioglu's model estimates confinement effects was closed to experimental value and the developed analytical approach considered the head was capable of predicting the strength gain factor results with a resonable accuracy.

  • PDF