• Title/Summary/Keyword: Transverse Tensile Specimen

Search Result 32, Processing Time 0.027 seconds

Measurement of Springback Ratio Using a Bend Rig (개선된 굽힘 시험장치를 이용한 스프링백 비의 측정)

  • 김용우;공성일;남진영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.410-415
    • /
    • 2002
  • A winding bend rig is designed to overcome the drawbacks of the conventional bend rig for measuring springback ratio of a strip or plate. Using the present bend rig, springback ratios are measured and they are compared with ones that obtained by using simple beam theory and tensile test. Theoretically, there should be no difference between the two values as far as the simple beam theory holds true for the bending test. But, within the scope of our tests, there is a difference of 5% between the two values since the specimen under bend test is subjected to a transverse shear force and friction force on the surface of the specimen.

  • PDF

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

The strain measurement on the aluminum alloy welded transition joint (알루미늄 合金 異材熔接部의 變形率測定)

  • 옹장우;전제춘;오상진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.625-634
    • /
    • 1986
  • The strain distribution on a welded aluminum alloy transition joint produced by a static tensile load has been measured using a moire method combined with photoelastic coating method. The test specimens were made of aluminum alloy 6061-T6 and 2014-T6 butt welded with ER-4043 filler metal, and were post welded heat treated (solid solution heat treatment 502.deg. C 70min.) and precipitated (artificial aging 171.deg. C 600min.) to cause an abrupt change of mechanical properties between the base metals and weld metal. The photoelastic epoxy rubber was cemented on the specimen grating which had been reproduced on the specimen surface by using an electropolishing. The measurements were compared with strains computed by Finite Element Analysis. The following results were abtained. (1) The maximum strain were distributed along the center line in the transverse directiion of the weld metal. (2) The strain gradient along the fusion line increased approaching the V-groove tip and the maximum value was observed at a quarter of width from the V-groove tip. (3) The moire method combined with photoelastic coating was proved very useful for real time strain measurement in the welded aluminum alloy transition joint.

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

Evaluation on Stress-Strain-Strength Behavior of the Textile Encased Soils via Triaxial Compression Tests (삼축압축시험을 통한 섬유로 구속된 흙의 응력-변형률-강도 거동 평가)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.643-653
    • /
    • 2013
  • Recently, there are an increasing number of studies on the method of wrapping the outer wall of granular piles with geosynthetic fibers such as geotextile or geogrid that has a certain level of tensile strength as an alternative method for the ground improvement techniques. In this study, triaxial compression tests are performed on the sand and clay specimen encased with various textiles to evaluate the reinforcing effect with regard to the tensile strength of the textile. Furthermore, triaxial compression tests are performed on the clay specimen inserted by sand only and sand encased with geosynthetics to compare behavioral differences between the conventional sand compaction pile and geosynthetic encased sand pile with regard to the replacement ratio, ${\alpha}_s$ and the tensile strength of the geosynthetics. Based on the experimental results, the strength enhancement due to the textile is affected by the longitudinal tensile strength rather than the transverse one of the applied textile. The effect of the confinement by the textile encasement results in the large increase of the cohesions. The overall behaviors, such as shear strength, pore pressure parameter at failure and stress ratio, of the geosynthetic encased sand pile is quite different from those of the conventional sand compaction pile.

Impact Bending Test Simulations of FH32 High-strength Steel for Arctic Marine Structures

  • Choung, Joonmo;Han, Donghwa;Noh, Myung-Hyun;Lee, Jae-Yik;Shim, Sanghoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • This paper provides theoretical and experimental results to verify the crashworthiness of FH32 high-strength steel for arctic marine structures against ice impact. Assuming that side-shell structures of the Korean arctic research vessel, ARAON, with ice-notation PL10, collide with sheet ice, one-third-scale test specimens with a single transverse frame are manufactured. Impact-bending tests were conducted using a rigid steel striker that mimics sheet ice. Drop height was calculated by considering the speed at which sheet ice is rammed. Prior to impact-bending tests, tensile coupon tests were conducted at various temperatures. The impact-bending tests were carried out using test specimens fully fixed to the inside bottom frame of a cold chamber. The drop-weight velocity and test specimen deformation speed were measured using a high-speed camera and digital image correlation analysis (DICA). Numerical simulations were carried out under the same conditions as the impact-bending tests. The simulation results were in agreement with the test results, and strain rate was a key factor for the accuracy of numerical simulations.

Strength Prediction on Composite Laminates Including Material Nonlinearity and Continuum Damage Mechanics (재료 비선형과 연속체 손상역학을 고려한 복합 적층판의 강도 예측)

  • Park, Kook-Jin;Kang, Hee-Jin;Shin, Sangjoon;Choi, Ik-Hyun;Kim, Minki;Kim, Seung-Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.927-936
    • /
    • 2014
  • This paper presents development and verification of the progressive failure analysis upon the composite laminates. Strength and stiffness of the fiber-reinforced composite are analyzed by property degradation approach with emphasis on the material nonlinearity and continuum damage mechanics (CDM). Longitudinal and transverse tensile modes derived from Hashin's failure criterion are used to predict the thresholds for damage initiation and growth. The modified Newton-Raphson iterative procedure is implemented for determining nonlinear elastic and viscoelastic constitutive relations. Laminar properties of the composite are obtained by experiments. Prediction on the un-notched tensile (UNT) specimen is performed under the laminate level. Stress-strain curves and strength results are compared with the experimental measurement. It is concluded that the present nonlinear CDM approach is capable of predicting the strength and stiffness more accurately than the corresponding linear CDM one does.

High Fatigue Life and Tensile Strength Characteristics of Low Activation Ferritic Steel(JLE-1) by TIG Welding (TIG용접한 저방사화 페라이트강(JLF-1)의 고온강도 및 피로수명특성)

  • Yoon, H.K.;Lee, S.P.;Kim, S.W.;Park, W.J.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.181-186
    • /
    • 2001
  • JLF-1 steel (Fe-9Cr-2W-V-Ta), low activation ferritic steel, is one of the promising candidate materials fer fusion reactor applications. High temperature fatigue life and tensile strength of JLF-1 steel and its TIG welded joints were investigated at the room temperature and $400^{\circ}C$. The strength of base metal (JLF-1) is in between those of weld metal and the HAZ. When the test temperature was increased from room temperature to $400^{\circ}C$, both strength and ductility decreased for base metal, weld metal and the HAZ. The longitudinal specimens of base metal showed similar strength and ductility compared with those of the transverse specimens at room temperature and $400^{\circ}C$. Little anisotropy was observed in the JLF-1 steel base metal in terms of rolling direction. Fatigue limit of weld metal which was obtained from cross-weld specimen is 495MPa. Thus, the weld metal showed the higher fatigue limit than those of base metal at both room temperature and $400^{\circ}C$. Little anisotropy of fatigue properties was observed for JLF-1 base metal in terms of rolling direction. When the test temperature was increased from room temperature to $400^{\circ}C$, the fatigue limit of both base metal and weld metal decreased substantially.

  • PDF

Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections (프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능)

  • Choi, Hyun-Ki;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.61-71
    • /
    • 2010
  • Five half-scale beam-to-column connections in a precast concrete frame were tested with cyclic loading that simulated earthquake-type motions. Five half -scale interior beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including one monolithic specimen and four precast specimens. Variables included the detailing used at the joint to achieve a structural continuity of the beam reinforcement, and the type of special reinforcement in the connection (whether ECC or transverse reinforcement). The specimen design followed the strong-column-weak-beam concept. The beam reinforcement was purposely designed and detailed to develop plastic hinges at the beam and to impose large inelastic shear force demands into the joint. The joint performance was evaluated on the basis of connection strength, stiffness, energy dissipation, and drift capacity. From the test results, the plastic hinges at the beam controlled the specimen failure. In general, the performance of the beam-to-column connections was satisfactory. The joint strength was 1.15 times of that expected for monolithic reinforced concrete construction. The specimen behavior was ductile due to tensile deformability by ECC and the yielding steel plate, while the strength was nearly constant up to a drift of 3.5 percent.

An Experimental Study of the Fatigue Specimen for the Typical Structural Details of the Steel Bridge (강교량의 표준적 구조상세에 대한 실험적 연구)

  • Chung, Yeong Wha;Jo, Jae Byung;Bae, Doo Byong;Jung, Kyoung Sup;Woo, Sang Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.463-473
    • /
    • 2000
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. The welded details included four kinds of welded details corresponding to the categories C, D, E and E' which represent the flange attachment details, web attachment details, transverse stiffeners and cover-plate details. Tensile fatigue tests were performed. The test results were compared with other available test results and the fatigue criteria of AASHTO, JSSC and Eurocode specifications. Generally, our test results were well agreed with other test results and satisfied with above-mentioned fatigue design provisions. However, it was found that transversely loaded weld-details showed lower fatigue strength than longitudinally loaded weld-details in transverse stiffener detail, and the test results of those details were not satisfied with AASHTO fatigue provisions. Examining the effect of length of gusset plate attachment details, welded details with longer attachment showed relatively lower fatigue strength, especially for the out-of-plane gusset plate details. It is recommended to perform additional fatigue tests with various loading and detail parameters and to establish the more detailed fatigue categories such as Eurocode or JSSC

  • PDF