• Title/Summary/Keyword: Transverse Reinforcement

Search Result 420, Processing Time 0.027 seconds

Limited Ductile Capacity of Reinforced Concrete Bridge Pier with Longitudinal Steel Lap-splicing by Pseudo Dynamic Test (유사동적 실험에 의한 철근콘크리트 교각의 주철근 겹이음에 따른 한정연성능력)

  • 박창규;박진영;조대연;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.885-890
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach. Pseudo dynamic tests of four full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, three test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites

  • Mohammed, Thaer Jasim;Abu Bakar, B.H.;Bunnori, N. Muhamad
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.123-136
    • /
    • 2015
  • The proposed techniques to repair concrete members such as steel plates, fiber-reinforced polymers or concrete have important deficiencies in adherence and durability. The use of ultra high performance fiber concrete (UHPFC) can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen reinforced concrete beams under torsion is investigated. Seven specimens of concrete beams reinforced with longitudinal and transverse reinforcements. One of these beams consider as control specimen while the others was strengthened by UHPFC on four, three, and two sides. This study includes experimental results of all beams with different types of configurations and thickness of UHPFC. As well as, finite element analysis was conducted in tandem with experimental test. Results reveal the effectiveness of the proposed technique at cracking and ultimate torque for different beam strengthening configurations, torque - twist graphs and crack patterns. The UHPFC can generally be used as an effective external torsional reinforcement for RC beams. It was noted that the behavior of the beams strengthen with UHPFC are better than the control beams. This increase was proportional to the retrofitted beam sides. The use of UHPFC had effect in delaying the growth of crack formation. The finite element analysis is reasonably agreement with the experimental data.

Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading

  • Long, Xu;Lee, Chi King
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.807-831
    • /
    • 2015
  • In the previous analytical studies on 2D reinforced concrete (RC) beam-column joints, the modified compression field theory (MCFT) and the strut-and-tie method (STM) are usually employed. In this paper, the limitations of these analytical models for RC joint applications are reviewed. Essentially for predictions of RC joint shear behaviour, the MCFT is not applicable, while the STM can only predict the ultimate shear strength. To eliminate these limitations, an improved STM is derived and applied to some commonly encountered 2D joints, viz., interior and exterior joints, subjected to monotonic loading. Compared with the other STMs, the most attracting novelty of the proposed improved STM is that all critical stages of the shear stress-strain relationships for RC joints can be predicted, which cover the stages characterized by concrete cracking, transverse reinforcement yielding and concrete strut crushing. For validation and demonstration of superiority, the shear stress-strain relationships of interior and exterior RC beam-column joints from published experimental studies are employed and compared with the predictions by the proposed improved STM and other widely-used analytical models, such as the MCFT and STM.

Computer based estimation of backbone curves for hysteretic Response of reinforced concrete columns under static cyclic lateral loads

  • Rizwan, M.;Chaudhary, M.T.A.;Ilyas, M.;Hussain, Raja Rizwan;Stacey, T.R.
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.193-209
    • /
    • 2014
  • Cyclic test of the columns is of practical relevance to the performance of compression members during an earthquake loading. The strength, ductility and energy absorption capabilities of reinforced concrete (RC) columns subjected to cyclic loading have been estimated by many researchers. These characteristics are not normally inherent in plain concrete but can be achieved by effectively confining columns through transverse reinforcement. An extensive experimental program, in which performance of four RC columns detailed according to provisions of ACI-318-08 was studied in contrast with that of four columns confined by a new proposed technique. This paper presents performance of columns reinforced by standard detailing and cast with 25 and 32 MPa concrete. The experimentally achieved load-displacement hysteresis and backbone curves of two columns are presented. The two approaches which work in conjunction with Response 2000 have been suggested to draw analytical back bone curves of RC columns. The experimental and analytical backbone curves are found in good agreement. This investigation gives a detail insight of the response of RC columns subjected to cyclic loads during their service life. The suggested analytical procedures will be available to the engineers involved in design to appraise the capacity of RC columns.

The Bearing Strength of Connections Between Steel Coupling Beam and Reinforced Concrete Shear Walls

  • Yun, Hyun Do;Park, Wan Shin;Han, Min Ki;Kim, Sun Woo;Kim, Yong Chul;Hwang, Sun Kyung
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • No specific guidelines are available for computing the bearing strength of connection between steel coupling beam and reinforced concrete shear wall in a hybrid wall system. There were carried out analytical and experimental studies on connection between steel coupling beam and concrete shear wall in a hybrid wall system. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i.e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The proposed equations in this study were in good agreement with both our test results and other test data from the literature.

Mechanical Properties of Steel-Fiber Reinforced Concrete (강섬유보강콘크리트의 역학적 거동 특성)

  • 홍성구;권숙국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.81-91
    • /
    • 1989
  • The aims of this study were to determine mechanical properties of steel-fiber reinforced concrete under splitting tensile, flexural and compressive loading, and thus to improve the possible applications of concrete. The major factors experimentally investigated in this study were the fiber content and the length and the diameter of fibers. The major results obtained are summarized as follows : 1.The strength, strain, elastic modulus and energy obsorption capability of steel-fiber reinforced concrete under splitting tensile loading were significantly improved by increasing the fiber content or the aspect ratio. 2.The flexural strength, central deflection, and flexural toughness of steel4iber reinforced beams were significantly improved by increasing the fiber content or the aspect ratio. And flexural behavior characteristic was good at the aspect ratio of about 60 to 75. 3.The strength, strain, and energy absorption capability in compression were increased with the increase of the fiber content. These effects were not so sensitive to the aspect ratio. The energy absorption capability was improved only slightly with the increase of the fiber length. 4.The elastic modulus, transverse strains, and poisson's ratios in compression were not influenced by the fiber content. 5.The steel-fibers were considered to be appropriated as the materials covering the weakness of concrete because the mechanical properties of concrete in tension and flexure were significantly improved by steel-fiber reinforcement.

  • PDF

A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs (PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.

Compression Splice Length in Concrete of 40 and 60 MPa Compressive Strengths (40, 60MPa 압축강도 콘크리트에서 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.571-572
    • /
    • 2009
  • Current design codes regarding compression lap splice dose not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of strength of concrete and transverse reinforcement. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens. Through two-variable non-linear regression analysis of measured splice strengths, a splice strength equation is derived, which is converted into a splice length equation.

  • PDF

Tension Stiffening Effect of High-Strength Concrete in Axially Loaded Members

  • Kim, Woo;Lee, Ki-Yeol;Yum, Hwan-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.915-923
    • /
    • 2003
  • This paper presents the test results of total 35 direct tensile specimens to investigate the effect of high-strength concrete on the tension stiffening effect in axially loaded reinforced concrete tensile members. Three kinds of concrete strength 25, 60, and 80 MPa were included as a major experimental parameter together with six concrete cover thickness ratios. The results showed that as higher strength concrete was employed, not only more extensive split cracking along the reinforcement was formed, but also the transverse crack space became smaller. Thereby, the effective tensile stiffness of the high-strength concrete specimens at the stabilized cracking stage was much smaller than those of normal-strength concrete specimens. This observation is contrary to the current design provisions, and the significance in reduction of tension stiffening effect by employment of high-strength concrete is much higher than that would be expected. Based on the present results, a modification factor is proposed for accounting the effect of the cover thickness and the concrete strength.

Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM

  • Arani, Ali Ghorbanpour;Kolahchi, Reza;Esmailpour, Masoud
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.787-800
    • /
    • 2016
  • The aim of the paper is to analyze nonlinear transverse vibration of an embedded piezoelectric plate reinforced with single walled carbon nanotubes (SWCNTs). The system in rested in a Pasternak foundation. The micro-electro-mechanical model is employed to calculate mechanical and electrical properties of nanocomposite. Using nonlinear strain-displacement relations and considering charge equation for coupling between electrical and mechanical fields, the motion equations are derived based on energy method and Hamilton's principle. These equations can't be solved analytically due to their nonlinear terms. Hence, differential quadrature method (DQM) is employed to solve the governing differential equations for the case when all four ends are clamped supported and free electrical boundary condition. The influences of the elastic medium, volume fraction and orientation angle of the SWCNTs reinforcement and aspect ratio are shown on frequency of structure. The results indicate that with increasing volume fraction of SWCNTs, the frequency increases. This study might be useful for the design and smart control of nano/micro devices such as MEMS and NEMS.