• 제목/요약/키워드: Transverse Flux Motor

검색결과 79건 처리시간 0.024초

Dynamic-Simulation을 통한 영구자석형 횡자속 회전기의 인덕턴스 추정 (Inductance Estimation of Permanent Magnet Type Transverse Flux Rotating Motor Using Dynamic-Simulation)

  • 김광운;김지원;정연호;이지영;강도현;장정환
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.722-727
    • /
    • 2010
  • This paper presents Dynamic-Simulation to estimate the inductance of a permanent magnet type transverse flux rotating motor by applying the real-time parameter estimation theory. As transverse flux rotating motor has the complex structure, it can be happen to some errors between real value and designed one with respect to the inductance. To reduce this kinds of errors, the real-time parameter estimation theory was applied to dynamic-simulation. And then, By comparing the estimated inductance and designed one, it is realized that the real-time parameter estimation theory can be applied in the permanent magnet type transverse flux rotating motor.

Design of PM Excited Transverse Flux Linear Motor of Inner Mover Type

  • Kang Do-Hyun;Ahn Jong-Bo;Kim Ji-Won;Chang Jung-Hwan;Jung Soo-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.137-141
    • /
    • 2005
  • A transverse flux, PM-exited linear motor (TFM-LM) with inner mover was designed and built. Its output power density is higher and its weight is lower than those of the conventional PM exited linear synchronous motors (PM LSM). To obtain the maximum thrust force under the given volume, the thrust force density with respect to the ratio of the slot width and the length of pole pitch is analyzed by the 3-dimension finite element method (FEM). Finally, calculated static thrust forces was compared with the experimental values. The calculated and measured performance of the transverse flux, PM-exited linear motor with inner mover revealed great potential for system improvements by reducing the mass of the linear motor. For examples, when this motor was applied to a ropeless elevator, it was possible to increase the power density by more than 400% over the conventional PM-LSM. The results of this study recommend this type of motor for the ropeless elevator or gearless direct linear driving system.

Ropeless 승강기용 영구자석여자 횡자속 선형전동기 설계에 관한 연구 (A Study on the Design of PM Exited Transverse Flux Linear Motor for Ropeless Elevator)

  • 강도현;방덕제;김종무;정연호;김문환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.145-151
    • /
    • 2000
  • The topological investigations regarding magnetic circuit geometry and winding form of the transverse flux machine have brought up a variety of constructable arrangements with different features for several types of application[1, 2]. Here with, a novel PM-exited linear motor with inner mover, based on the transverse flux configuration leads to a considerable increase in power density for moving part. In this study we designed PM-exited transverse flux linear motor for ropeless elevator, whose output power density is higher and weight is lighter than conventional linear synchronous motors. When the designed motor in this study is applied to ropeless elevator, it is possible to increase power density more than 400% comparing with PM exited linear synchronous motor. The result of this study can be utilized for ropeless elevator or gearless direct linear moving system with high output[3].

  • PDF

Design of a Transverse Flux Linear Motor

  • Chang, Jung-Hwan;Kim, Ji-Won;Kang, Do-Hyun
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.58-63
    • /
    • 2011
  • This paper presents design procedures of a transverse flux linear motor (TFLM). The minimum and maximum flux linkage was determined by the simplified equivalent magnetic circuit and estimated average magnetic flux density at the air gap region by considering the shape of applied magnetomotive force (MMF). With this information, the number of turns of each phase winding was calculated based on the amplitude of applied voltage and speed of a mover. The rated current, coil diameter, and winding area were obtained with the aid of an empirical formula for determining the required MMF. The usefulness of the proposed design method for TFLM is verified by the three-dimensional equivalent magnetic circuit network (EMCN) method and the experimental results of prototyped machine.

영구자석 여자 횡축형 선형전동기의 추력맥동 저감 제어기법 (Control Method for Minimizing Thrust Ripple of PM Excited Transverse Flux Linear Motor)

  • 안종보;강도현;김지원;정수진;임태윤;박준호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권1호
    • /
    • pp.16-23
    • /
    • 2004
  • Permanent magnet-excited transverse flux linear motor(TFLM) is known to have more excellent ratio of force to weight than any other linear motors. But, thrust generated by phase current is non-linear with regard to current and relative position like switched reluctance motor. This makes current and speed controller design difficult. This paper presents a method on minimization of thrust ripple of permanent magnet-excited transverse flux linear motor. Using genetic algorithm(GA), optimal current waveform can be found under the constraint conditions such as current limit, minimum of ohmic loss and limited rate of change of current etc. The effectiveness is verified through computer simulation and experimental test results.

횡자속 선형전동기의 추력특성에 따른 선형액추에이터의 동특성 (Dynamic Response of Linear Actuator with the Thrust Force of Transverse Flux Linear Motor)

  • 우병철;강도현;홍도관
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.16-20
    • /
    • 2006
  • The proposed paper presents an integrated linear actuator which combines Transverse Flux Linear Motor(TFLM) for Household elelctric applications. They both use the same primary magnetic circuit, but they have different secondary movers. The paper presents a new design of linear motor for a new electromagnetic linear actuator, an tintegrated TFLM. The calculated tthrust force is good agreement with experiments. We have studied a transient response of a linear actuator with a damping ratio, spring constant and specially a pressed power patterns for a constant stroke control.

Sheet Rotor를 가진 직선형 유도전동기의 Transverse Edge Effect에 관한 연구 (A Study on Transverse Edge Effect in Linear Induction Motor With Sheet Rotor)

  • 이윤종;임달호;백수현
    • 전기의세계
    • /
    • 제23권4호
    • /
    • pp.39-45
    • /
    • 1974
  • In most previous research work, the transverse edge effect has been allowed for only by use of a relativity-increase factor. This paper gives a more exact treatment. A two-dimensional-field analysis is presented for the problem of sheet rotor linear induction motor with finite width the method used takes account of flux leakage in the space between the stator and secondary sheet rotor as well as in the secondary itself. Equations are derived for the flux density distribution in the air gap and for the starting face, in each case as a function of stator current. The cross gap flux density peaks towards athe edge of the stator. This phenomena is known as the transverse edge effect. Measurements of the flux density in the air gap and starting force on a linear induction motor with sheet rotor of different width showed a reasonable agreement,suggest that it would be desirable to take into account also, at least for this motor in which severe redistribution occurs.

  • PDF

New Type 도시형 자기부상열차용 횡방향 자속 선형유도전동기 (Transverse Flux Linear Induction Motor for New Type Urban MAGLEV)

  • 조윤현;이재봉
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.997-1000
    • /
    • 1993
  • This paper proposes the linear induction motor with salient poles, transverse flux and the secondary aluminum conductor for a new type urban MAGLEV. Compared with the more usual kind of linear induction motor with longitudinal flux, TFLIM have flux paths tying transversely to the direction of motion. This shortens the magnetic circuit and produces the thrust, the attraction force and the lateral stabilization force simultaneously. Owing to these electrodynamic force, TFLIM will be usable to a new type urban MGLEV.

  • PDF

Presentation of a Novel E-Core Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz-Christoffel Mapping Method

  • Fu, Dong-Shan;Xu, Yan-Liang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1963-1969
    • /
    • 2017
  • In order to overcome the manufacturing difficulty of the transverse-flux permanent magnet linear motor (TFPMLM) and enhance its performance much better, a novel TFPMLM with E-core and 3 dimension (3D) magnetic structures is proposed in this paper. Firstly, its basic structure and operating principle are presented. Then the equivalent 2D configuration of the TFPMLM is transformed, so that the Schwarz-Christoffel (SC) mapping method can be used to analyze the motor. Furthermore, the air gap flux density distribution is solved by SC mapping method, based on which, the EMF waveform, no-load cogging force waveform and load force waveform are obtained. Finally, the prototyped TLPMLM is manufactured and the results are obtained from the experiment and 3D FEM, respectively, which are used to compare with those from SC mapping method.

A Study on Sensorless Control of Transverse Flux Rotating Motor Based on MRAS with Parameter Estimation

  • Kim, Ji-Won;Kim, Kwang-Woon;Kisck, Dragos Ovidiu;Kang, Do-Hyun;Chang, Jung-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.864-869
    • /
    • 2011
  • This paper presents a sensorless control and parameter estimation strategies for a Transverse Flux Rotating Motor (TFRM). The proposed sensorless control method is based on a Model Reference Adaptive System (MRAS) to estimate the stator flux. Parameter estimation theory is also applied into the sensorless control method to estimate motor parameters, such as inductances. The effectiveness of the proposed methods is verified by some simulations and experiments.