• Title/Summary/Keyword: Transrectal hyperthermia

Search Result 1, Processing Time 0.018 seconds

The Effects of Warm and Cold Stimulations on the Temperature Distribution in the Prostate (냉.온열의 반복 자극이 전립선 내부의 온도 분포에 미치는 영향)

  • 문우석;백병준;박복춘;김철생
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.467-475
    • /
    • 2002
  • Hyperthermia using transrectal thermal probes has been used for a noninvasive treatment of prostate diseases. However it is known that heating the rectal wall at excessively high temperature can lead to destruction of the rectal mucous membrane. and it is difficult to maintain an optimum temperature over the entire prostate. Thus, a more accurate understanding of the heat transfer mechanism between prostate and hyperthermia system is needed Numerical analysis was performed to investigate how the cold/warm stimulations on the prostate surface affect the temperature distribution in the prostate model. The general purpose software "FLUENT" was used for obtaining a finite volume solution to the unsteady conduction equation and to calculate the time-varying temperature in the prostate. Effects of the warm/cold stimulations and the stimulation frequency on the temperature distribution were simulated. and we visualized how hyperthermia affected the inside of the prostate. It was found that the effect of hyperthermia by using a typical heating method is limited due to the low thermal conductivity of the prostate. Consecutive repetitions of warm and cold stimulations were considered to provide the thermal irritations inside a prostate. The effects of temperature difference and duration of warm/cold stimulations were investigated, and basic data for the optimum period and effective patterns of stimulations were obtained. A simplified bioheat equation was also solved to describe effects of the blood flow on the blood-tissue heat transfer. The effect of blood flow was not dominant compared to that of warm/cold stimulations. These results might be used as data for design of prostate treating probe, prostatic therapy and thermal stimulation effects on the prostate.