• Title/Summary/Keyword: Transporting Hazardous Materials

Search Result 6, Processing Time 0.019 seconds

Development of Real-time Safety Management System for Incident Prevention by Hazard Material Transport (위험물 운송사고 예방을 위한 안전관리시스템 개발)

  • Kim, Yeon Woong;Kim, Si Gon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.105-113
    • /
    • 2015
  • The incidents related to transporting hazardous materials may cause serious impacts on neighborhood and surrounding areas. It is essential to have a real-time safe management system for incidents prevention of transporting hazardous materials. Currently, the system is not integrated into one channel, which makes it difficult to control an incidents response. Another problem is that event status is not appropriately shared among authorities having responsibilities taking down the incidents. This paper investigates previous studies covering the real-time safety management system for hazard material transports and suggests an integrated management system that helps communicate effectively and promptly.

Multiobjective Routing and Scheduling for Vehicles Transporting Hazardous Materials (위험물 운송차량의 다목적 경로 및 스케줄 관리 방안)

  • Sin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.161-172
    • /
    • 2007
  • Vehicles transporting hazardous materials can make huge damage to people, properties and environment by traffic accidents. Therefore, transporting hazardous materials is a big issue with the cutting edge technology of communications in these days. However, despite this situation, Korean government gives limited efforts for systematic management, research and investment about hazardous materials. Accordingly, this research suggests the key path finding algorithm about management of real-time schedule and routes for vehicles transporting hazardous materials. Besides, the case study is progressed in transportation networks of Seoul in order to evaluate the reality of algorithm. Specifically, time-space network transformation is performed for time window attributes. In addition, this study proposes the techniques searching for non-dominated paths considering schedule by the multiobjective shortest path algorithm based on dynamic programming in dynamic transportation networks including multiobjective attributes.

An Analysis of Travel Pattern for Hazardous Materials Transportation on Expressway through Origin-Destination Flows Estimation (고속도로 링크별 통행량 추정을 통한 위험물질 수송차량 통행행태 분석)

  • Hong, Jungyeol;Kim, Yoonhyuk;Park, Dongjoo
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.68-76
    • /
    • 2018
  • This study aims to provide a methodological framework to estimate the travel demand of hazardous materials transporting vehicles by link and analyze daily traffic patterns on an expressway to develop safety roadway management strategies. Traffic volume of hazardous material vehicles is counted through the on-site investigation at twenty-five tollgates on the expressway, and their demands by a link are predicted through origin-destination flows estimation. The result shows that the number of the domestic hazardous materials vehicles is approximately 51,207 vehicles per day and it indicates that hazardous materials transport vehicles account for 1.5% of total daily traffic on the internal expressway and 6.2% of total cargo traffic volumes. This study roughly estimated how many hazardous materials vehicles pass through the expressway segment. Thus it is expected to be utilized for establishing a systematic highway management strategy in the future by calculating the traffic volume of the hazardous material vehicles traveling on the interstate expressway.

Risk Analysis of Transporting Hazardous Substances in Harbor Using Modeling Program (항만에서 위험물 운송 중 유해화학물질 누출 위험성에 관한 연구)

  • Yoon, Sukyoung;Yun, Jayeon;Han, Jiyun;Jung, Seungho
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.272-278
    • /
    • 2018
  • Recently, the use of hazardous chemicals has been continuously increasing. Therefore, the international trade volume is growing and chemical accidents have increased. Nowadays, the safety awareness of the public has increased. As a result, the management and supervision of hazardous chemicals have been strengthened. However, the port policy of Korea has focused on increasing the volume of cargo through facility development. Thus, the port management of hazardous chemicals has been relatively neglected. For national economic growth and society, the port management of hazardous chemicals should be considered to efficiently ensure safety and economic growth. Therefore, this study assumed scenarios where hazardous materials were moved in a dangerous container, not only on appropriate wharfs but also in ports that were close to a big city. The BTX substances were selected among the toxic chemicals with large import and export volumes, and the risk distance and damage effects were predicted using various risk assessment programs. It is expected that this could be used to improve a port safety management system and could be utilized to determine the safety distance in case of an accident.

Performance Evaluation of Advance Warning System for Transporting Hazardous Materials (위험물 운송을 위한 조기경보시스뎀 성능평가)

  • Oh Sei-Chang;Cho Yong-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.15-29
    • /
    • 2005
  • Truck Shipment Safety Information, which is a part of the development of NERIS is divided into Optimal Route Guidance System and Emergency Response System. This research is for establishing an advance warning system, which aims for preventing damages(fire, explosion, gas-escape etc.) and detecting incidents that are able to happen during transporting hazardous materials in advance through monitoring the position of moving vehicles and the state of hazardous materials in real-time. This research is peformed to confirm the practical possibility of application of the advance warning system that monitors whether the hazardous materials transport vehicles move the allowed routes, finds the time and the location of incidents of the vehicles promptly and develops the emergency system that is able to respond to the incidents as well by using the technologies of CPS, CDMA and CIS with testing the ability of performance. As the results of the test, communication accuracies are 99$\%$ in freeway, 96$\%$ in arterial, 97$\%$ in hilly sections, 99$\%$ in normal sections, 96$\%$ in local sections, 99$\%$ in urban sections and 98$\%$ in tunnels. According to those results, the system has been recorded a high success rate of communication that enough to apply to the real site. However, the weak point appeared through the testing is that the system has a limitation of communication that is caused in the rural areas and certain areas where are fewer antennas that make communication possible between on-board unit and management server. Consequently, for the practical use of this system, it is essential to develop the exclusive en-board unit for the vehicles and find the method that supplements the receiving limitation of the GPS coordinates inside tunnels. Additionally, this system can be used to regulate illegal acts automatically such as illegal negligence of hazardous materials. And the system can be applied to the study about an application scheme as a guideline for transporting hazardous materials because there is no certain management system and act of toxic substances in Korea.

  • PDF

Development of Truck Shipment Incident Emergency Response System for Transporting Hazardous Materials Using GPS (GPS를 이용한 수송사고 조기경보시스템 개발(1단계 : 국내외 사례조사와 개발방법제시))

  • Oh Se-Chang;Cho Yong-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • As a part of NERI:;, Truck Shipment Safety Information is divided into Optimal Route Guidance system and Emergency Response system. This study which is for developing of Truck Shipment Incident Emergency Response System intends to prevent or early response damage caused by incidents through realtime monitoring about the position and the state of Hazard material transport truck. For this, we divide it into three scenarios; realtime monitoring, management of incidents, information provision to related organizations and present functional requirements and architecture coming with each scenario. As a result of the first step among total three steps, it would able to not only realtime management of trucks but also guide for auto-enforcement or management about illegal act like dumping scrapped material. It is now under examination about position of detection and technology of communication to application. From now on, it is expect to test in the range of Metropolitan after selecting appropriate technology.

  • PDF