• Title/Summary/Keyword: Transporter gene

Search Result 262, Processing Time 0.028 seconds

X-linked adrenoleukodystrophy; Recent Advances in Classification, Diagnosis and Management (X 연관 부신백질이영양증의 분류, 진단 및 치료의 최신 지견)

  • Jung, Eul Sik;Ko, Ara;Kang, Hoon-Chul
    • Journal of the Korean Child Neurology Society
    • /
    • v.24 no.3
    • /
    • pp.71-83
    • /
    • 2016
  • X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ATP binding cassette subfamily D member 1 (ABCD1), a gene that encodes peroxisomal membrane located on ABC half-transporter named adrenoleukodystrophy protein (ALDP). X-ALD is characterized by a highly variable clinical spectrum, including progressive cerebral type, adrenomyeloneuropathy, and addison-only phenotype. No genotype/phenotype correlation has been established. Thus, unidentified modifier genes and other co-factors are speculated to modulate the phenotypic variation and disease severity. Recent advanced sequencing methods and reprogramming technologies not only offer an affordable and applicable approach to investigate the pathophysiological mechanisms of adrenoleukodystrophy, but also provide means to develop therapy. A causal therapy of X-ALD is lacking. Lorenzo's oil therapy is recommended for asymptomatic boys, but the longest study found that the oil was not beneficial at all to symptomatic X-ALD patients. Hematopoietic stem cell therapy has a relevant chance of success when performed during this early stage of cerebral type X-ALD. Recently, it has been insisted that lentiviral-mediated gene therapy of hematopoietic stem cells can provide clinical benefits in X-ALD. This review describes current knowledge on the clinical presentation, pathogenesis, diagnosis and management of X- ALD.

Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

  • Xu, Hongyan;Xie, Zhanling;Jiang, Hongchen;Guo, Jing;Meng, Qing;Zhao, Yuan;Wang, Xiaofang
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.421-433
    • /
    • 2021
  • Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.

Loss of Heterozygosity at the Calcium Regulation Gene Locus on Chromosome 10q in Human Pancreatic Cancer

  • Long, Jin;Zhang, Zhong-Bo;Liu, Zhe;Xu, Yuan-Hong;Ge, Chun-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2489-2493
    • /
    • 2015
  • Background: Loss of heterozygosity (LOH) on chromosomal regions is crucial in tumor progression and this study aimed to identify genome-wide LOH in pancreatic cancer. Materials and Methods: Single-nucleotide polymorphism (SNP) profiling data GSE32682 of human pancreatic samples snap-frozen during surgery were downloaded from Gene Expression Omnibus database. Genotype console software was used to perform data processing. Candidate genes with LOH were screened based on the genotype calls, SNP loci of LOH and dbSNP database. Gene annotation was performed to identify the functions of candidate genes using NCBI (the National Center for Biotechnology Information) database, followed by Gene Ontology, INTERPRO, PFAM and SMART annotation and UCSC Genome Browser track to the unannotated genes using DAVID (the Database for Annotation, Visualization and Integration Discovery). Results: The candidate genes with LOH identified in this study were MCU, MICU1 and OIT3 on chromosome 10. MCU was found to encode a calcium transporter and MICU1 could encode an essential regulator of mitochondrial $Ca^{2+}$ uptake. OIT3 possibly correlated with calcium binding revealed by the annotation analyses and was regulated by a large number of transcription factors including STAT, SOX9, CREB, NF-kB, PPARG and p53. Conclusions: Global genomic analysis of SNPs identified MICU1, MCU and OIT3 with LOH on chromosome 10, implying involvement of these genes in progression of pancreatic cancer.

Genetic Variation in the ABCB1 Gene May Lead to mRNA Level Chabge: Application to Gastric Cancer Cases

  • Mansoori, Maryam;Golalipour, Masoud;Alizadeh, Shahriar;Jahangirerad, Ataollah;Khandozi, Seyed Reza;Fakharai, Habibollah;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8467-8471
    • /
    • 2016
  • Background: One of the major mechanisms for drug resistance is associated with altered anticancer drug transport, mediated by the human-adenosine triphosphate binding cassette (ABC) transporter superfamily proteins. The overexpression of adenosine triphosphate binding cassette, sub-family B, member 1 (ABCB1) by multidrug-resistant cancer cells is a serious impediment to chemotherapy. In our study we have studied the possibility that structural single-nucleotide polymorphisms (SNP) are the mechanism of ABCB1 overexpression. Materials and Methods: A total of 101 gastric cancer multidrug resistant cases and 100 controls were genotyped with sequence-specific primed PCR (SSP-PCR). Gene expression was evaluated for 70 multidrug resistant cases and 54 controls by real time PCR. The correlation between the two groups was based on secondary structures of RNA predicted by bioinformatics tool. Results: The results of genotyping showed that among 3 studied SNPs, rs28381943 and rs2032586 had significant differences between patient and control groups but there were no differences in the two groups for C3435T. The results of real time PCR showed over-expression of ABCB1 when we compared our data with each of the genotypes in average mode. Prediction of secondary structures in the existence of 2 related SNPs (rs28381943 and rs2032586) showed that the amount of ${\Delta}G$ for original mRNA is higher than the amount of ${\Delta}G$ for the two mentioned SNPs. Conclusions: We have observed that 2 of our studied SNPs (rs283821943 and rs2032586) may elevate the expression of ABCB1 gene, through increase in mRNA stability, while this was not the case for C3435T.

Family Study of TAP Gene Polymorphism and HLA-TAP Haplotypes in Koreans (가계조사를 통한 한국인의 TAP 유전자의 다형성과 HLA-TAP 일배체형 분포에 관한 연구)

  • Whang, Dong Hee;Park, Myoung Hee
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.248-255
    • /
    • 2002
  • Background: TAP1 and TAP2 are two ABC transporter genes located within the class II region of the human MHC. Their protein products form a heterodimer whose function is to transport peptides from the cytoplasm into the endoplasmic reticulum. This study was performed to examine the polymorphism of TAP genes and the distribution of HLA-TAP haplotypes in the Korean population through family analysis. Methods: The subjects used in this study were 50 healthy Korean families consisting of 233 individuals. TAP1 (codons 333 and 637) and TAP2 (codons 379, 565, 577, 651, 665, and 687) typings were carried out by the PCR-restriction fragment length polymorphism (RFLP) method. HLA-DRB1 and DQB1 genotyping results from a previous study were used for HLA-TAP haplotype analysis. Results: The number (gene frequency) of TAP1 and TAP2 alleles detected were 3 for TAP1 (A 81.5%, B 17.0%, and C 1.5%) and 8 for TAP2 (A1 32.0%, A2 12.5%, B 34.0%, Bky2 6.5%, C 7.0%, D 3.0%, E 4.5%, and G 0.5%). Eleven TAP1-TAP2 haplotypes were observed with $frequency{\geq}1%$, among which 4 haplotypes (A-B, B-A1, A-Bky2, and C-E) showed weak but significant positive linkage disequilibrium (P<0.05). When DRB1-DQB1 haplotypes were extended to TAP1 and TAP2 loci, much diversification of haplotypes was observed: 19 different DRB1-DQB1 haplotypes formed 58 different haplotypes extended to TAP1 and TAP2 loci. These results add more evidence to the view that recombination hotspot is present within and around TAP gene region. Conclusion: The allele frequencies of TAP1 and TAP2 genes and the distribution of TAP1-TAP2 and HLA-TAP haplotypes were studied in Koreans based on a family study.

Gene Expression Profile of Zinc-Deficient, Homocysteine-Treated Endothelial Cells

  • Kwun, In-Sook;Beattie, John H.
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.390-394
    • /
    • 2003
  • In the post-genome period, the technique for identifying gene expression has been progressed to high throughput screening. In the field of molecular nutrition, the use of screening techniques to clarify molecular function of specific nutrients would be very advantageous. In this study, we have evaluated Zn-regulated gene expression in Zn-deficient, homocystein-treated EA.hy926 cells, using cDNA microarray, which can be used to screen the expression of many genes simultaneously. The information obtained can be used for preliminary assessment of molecular and signaling events modulated by Zn under pro-atherogenic conditions. EA.hy926 cells derived from human umbilical vein endothelial cells were cultured in Zn-adequate (control, 15 $\mu$M Zn) or Zn-deficient (experimental, 0 $\mu$M Zn) Dulbecco's MEM media under high homocysteine level (100 $\mu$M) for 3 days of post-confluency. Cells were harvested and RNA was extracted. Total RNA was reverse-transcribed and the synthesized cDNA was labeled with Cy3 or Cy5. Fluorescent labeled cDNA probe was applied to microarray slides for hybridization, and the slide was then scanned using a fluorescence scanner. The expression of seven genes was found to be significantly decreased, and one significantly increased, in response to treatment of EA.hy926 cells with Zn-deficient medium, compared with Zn-supplemented medium. The upregulated genes were oncogenes and tumor suppressor genes, cell cycle-related genes and transporter genes. The down-regulated gene was RelB, a component of the NF-kappaB complex of transcription factors. The results of this study imply the effectiveness of cDNA microarray for expression profiling of a singly nutrient deficiency, namely Zn. Furthur study, using tailored-cDNA array and vascular endothelial cell lines, would be beneficial to clarify the molecular function of Zn in atherosclerosis, more in detail.

Effects of Hepcidin Hormone on the Gene Expression of Ferroportin and Divalent Metal Transporter 1 in Caco-2 Cells and J774 Cells (Caco-2 소장세포와 J774 대식세포에서 Hepcidin 호르몬이 철분 수송체 Ferroportin과 Divalent Metal Transporter 1의 유전자 발현에 미치는 영향)

  • Chae, Sun-Ju;Chung, Ja-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.721-728
    • /
    • 2008
  • Hepcidin is a peptide hormone produced by the liver, of which secretion is closely related to iron status in the body. However, little is known about the molecular mechanism(s) by which this peptide regulates body iron homeostasis. The purpose of this study was to determine the effects of hepcidin treatment within the physiological concentration range on the expressions of two different iron transporter proteins-ferroportin (FPN) and divalent metal transporter 1 (DMT1). Differentiated Caco-2 intestinal cells and macrophage J774 cells were treated with either synthetic hepcidin or hepcidin-rich fraction separated from human urine at the concentration of 10 nM and 100 nM for 24 hours. Results show that hepcidin treatment in differentiated Caco-2 cells or in J774 cells did not change the level of either FPN mRNA or DMT1 mRNA. On the other hand, hepcidin treatment at the dose of 100 nM significantly decreased the FPN protein levels and DMT1 protein levels in differentiated Caco-2 cells. Similarly, urinary hepcidin treatment (10 nM & 100 nM) also significantly decreased the levels of FPN and DMT1 proteins in J774 macrophage cells. These results showed that hepcidin might play an important role in the regulation of iron homeostasis by lowering the protein levels of iron transporter FPN and DMT1 both in enterocytes and in macrophage cells.

Antidiabetic Activity and Mechanisms of Acarbose in $KKA^{y}$ Mice

  • Kim, Young-Lim;Chung, Sung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.183-188
    • /
    • 2001
  • To elucidate antidiabetic effect and mechanism(s) of acarbose in a polygenic spontaneous hyperglycemic and hyperinsulinemic diabetic animal model, $KKA^y$ mice, acarbose was administered orally for 4 weeks and effects on body weight, plasma glucose and insulin levels, genetic expressions of intestinal sucrase-isomaltase (SI), sodium-glucose cotransporter (sGLT1) and glucose transporter in quadriceps muscle (GLUT4) were examined in this study. Although no differences in body weight were detected between control and acarbose-treated groups, plasma glucose level in acarbose-treated group was markedly reduced as compared to the control. In the mechanism study, acarbose downregulated the SI and SGLT1 gene expressions, and upregulated the GLUT4 mRNA and protein expressions when compared to the control group. In conclusion, the data obtained strongly implicate that acarbose can prevent the hyperglycemia in $KKA^y$ mice possibly through blocking intestinal glucose absorption by downregulations of SI and sGLT1 mRNA expressions, and upregulation of skeletal muscle GLUT4 mRNA and protein expressions.

  • PDF

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia;Lee, Mi-Gi;Bin, Bum-Ho;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.323-330
    • /
    • 2020
  • Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.