• Title/Summary/Keyword: Transportation policy evaluation

Search Result 147, Processing Time 0.022 seconds

Evaluation of Accuracy and Utilization of the Drone Photogrammetry for Open-pit Mine Monitoring (노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.191-196
    • /
    • 2019
  • The development of open-pit mines leads to large-area topographical changes in highland forests and can lead to severe deterioration of forests, requiring continuous monitoring. The drone photogrammetry is performed at a lower altitude than the existing manned aerial photogrammetry, and thus has a relatively high accuracy. The purpose of this study is to construct spatial information of large open pit mine using drone photogrammetry and to evaluate the accuracy and utilization of the results. The accuracy of the drone photogrammetric results was 0.018 ~ 0.063m in the horizontal direction and 0.027m ~ 0.088m in the vertical direction. These results satisfy the permissible accuracy of 1: 1,000 digital topographic map and it can be used for open mine monitoring. The geospatial information of the open pit mine can be used in various ways, and it can be used to monitor the quantitative change of a specific area for time series change through data management by periodic data acquisition. If drone photogrammetry is applied to open-pit mine monitoring in the future, work time and cost can be greatly reduced compared to the conventional GNSS or total station method, and the work efficiency can be greatly improved because more visible data can be generated.

GIS-based Network Analysis for the Understanding of Aggregate Resources Supply-demand and Distribution in 2018 (GIS 네트워크 분석을 이용한 2018년 골재의 수요-공급과 유통 해석)

  • Lee, Jin-Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.515-533
    • /
    • 2021
  • Based on the supply location, demand location, and transportation network, aggregate supply-demand characteristics and aggregate distribution status were analyzed from the results of the closest distance, service areas, and location-allocation scenarios using GIS network analysis. As a result, it was found that the average transport distance of aggregates from the supplier was 6 km on average, the average range of 7 km for sand, and 10 km for gravel was found to reach the destination. In particular, the simulated service area covers about 92% in Seoul-Gyeonggi Province, 85% in Busan-Ulsan-Gyeongnam Province, and more than 90% in Daejeon-Sejong-Chungnam Province. These results have a significant implication in quantitatively interpreting primary data on aggregate supply-demand. Furthermore, these results suggest the possibility of a wide-area quantitative analysis of aggregate supply regions necessary for establishing a basic aggregate plan. The results also evaluated by the site-allocation scenario show that aggregate supply may be possible through companies less than 200 with large-amounts quarries, which is the 700 companies currently supplying small amounts of aggregates on the country. Therefore, in terms of distribution of aggregates, a policy approach is needed to form an appropriate market for regions with high and low density of aggregate supply services, and the necessity of regional distribution and re-evaluation is suggested through an aggregate supply analysis demand across the country. Furthermore, in analyzing the supply-demand network for the aggregate market, additional research is needed to establish long-term policies for the aggregate industry and related industries.

Evaluation of the Efficiency of Korea's Domestic Passenger Shipping Routes using DEA Window (DEA Window 모형을 활용한 한국의 내항여객운송항로 효율성 평가)

  • Kim, Tae Il;Park, Sung Hwa
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • The purpose of this study is to analyze the efficiency of 90 domestic passenger shipping routes using the DEA Window model as a Decision Making Unit (DMU). Data from 2015 to 2019 are divided into three windows, and efficiency was analyzed by using the number of passenger ships of sails, gross tonnage and distance traveled as input variables and transportation performance of the general public and islanders as output variables. As a result of the analysis, improvements are derived and presented for routes with low relative efficiency. In particular, the efficiency is evaluated for general routes operated by private operators as profit routes and auxiliary routes supported by the government as non-profit routes. In addition, scale efficiency (SE) is derived by using the technical efficiency (TE) of the CCR model and the pure technical efficiency (PTE) values of the BCC model. It is found that the inefficiency of the route was due to pure technical efficiency (PTE) rather than scale efficiency (SE). It will be necessary to consider the improvements for each route shown in the analysis results of this study when establishing the policy for the domestic passenger shipping route.

Integrated Data Safe Zone Prototype for Efficient Processing and Utilization of Pseudonymous Information in the Transportation Sector (교통분야 가명정보의 효율적 처리 및 활용을 위한 통합데이터안심구역 프로토타입)

  • Hyoungkun Lee;Keedong Yoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.48-66
    • /
    • 2024
  • According to the three amended Laws of the Data Economy and the Data Industry Act of Korea, systems for pseudonymous data integration and Data Safe Zones have been operated separately by selected agencies, eventually causing a burden of use in SMEs, startups, and general users because of complicated and ineffective procedures. An over-stringent pseudonymization policy to prevent data breaches has also compromised data quality. Such trials should be improved to ensure the convenience of use and data quality. This paper proposes a prototype system of the Integrated Data Safe Zone based on redesigned and optimized pseudonymization workflows. Conventional workflows of pseudonymization were redesigned by applying the amended guidelines and selectively revising existing guidelines for business process redesign. The proposed prototype has been shown quantitatively to outperform the conventional one: 6-fold increase in time efficiency, 1.28-fold in cost reduction, and 1.3-fold improvement in data quality.

Evaluation of Park Service in Neighborhood Parks based on the Analysis of Walking Accessibility - Focused on Bundang-gu, Seongnam-si - (보행접근성 분석에 기반한 근린공원의 공원서비스 평가 - 성남시 분당구를 대상으로 -)

  • Hwang, Hae-Kwon;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.1
    • /
    • pp.59-70
    • /
    • 2024
  • As urbanization progresses, the demand for parks and green space is increasing. Park green spaces in the city are important spaces in the city because they are recognized as spaces where people can freely engage in outdoor activities. The park service area is a measure that shows the extent to which services are provided based on distance. In this process, the concept of accessibility plays an important role, and walking, in particular, as the most basic means of transportation for people and has a great influence on the use of parks. However, the current park service area analysis focuses on discovering underprivileged areas, so detailed evaluation of beneficiary areas is insufficient. This study seeks to evaluate park service areas based on the pedestrian accessibility and the pedestrian network. Park services are services that occur when users directly visit the park, and accessibility is expected to be reflected in terms of usability. To quantify the pedestrian network, this study used space syntax to analyze pedestrian accessibility based on integration values. The integration values are an indicators that quantify the level of accessibility of the pedestrian network, and in this study, the higher the integration value, the higher the possibility of park use. The results of the study are as follows. First, Bundang-gu's park service area accounts for 43%, and includes most sections with high pedestrian accessibility, but some sections with good pedestrian accessibility are excluded. This can be seen as a phenomenon that occurs when residential areas and commercial and business areas are given priority during the urban planning process, and then park and green areas are selected. Second, based on Bundang-gu, the park service area and pedestrian accessibility within the park service area were classified by neighborhood unit. Differences appear for each individual neighborhood unit, and it is expected that the availability of the park will vary accordingly. In addition, even in areas created during the same urban planning process, there were differences in the evaluation of park service areas according to pedestrian accessibility. Using this, it is possible to evaluate individual neighborhood units that can be reflected in living area plans, and it can be used as a useful indicator in park and green space policies that reflect this in the future.

Operation Measures of Sea Fog Observation Network for Inshore Route Marine Traffic Safety (연안항로 해상교통안전을 위한 해무관측망 운영방안에 관한 연구)

  • Joo-Young Lee;Kuk-Jin Kim;Yeong-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • Among marine accidents caused by bad weather, visibility restrictions caused by sea fog occurrence cause accidents such as ship strand and ship bottom damage, and at the same time involve casualties caused by accidents, which continue to occur every year. In addition, low visibility at sea is emerging as a social problem such as causing considerable inconvenience to islanders in using transportation as passenger ships are collectively delayed and controlled even if there are local differences between regions. Moreover, such measures are becoming more problematic as they cannot objectively quantify them due to regional deviations or different criteria for judging observations from person to person. Currently, the VTS of each port controls the operation of the ship if the visibility distance is less than 1km, and in this case, there is a limit to the evaluation of objective data collection to the extent that the visibility of sea fog depends on the visibility meter or visual observation. The government is building a marine weather signal sign and sea fog observation networks for sea fog detection and prediction as part of solving these obstacles to marine traffic safety, but the system for observing locally occurring sea fog is in a very insufficient practical situation. Accordingly, this paper examines domestic and foreign policy trends to solve social problems caused by low visibility at sea and provides basic data on the need for government support to ensure maritime traffic safety due to sea fog by factually investigating and analyzing social problems. Also, this aims to establish a more stable maritime traffic operation system by blocking marine safety risks that may ultimately arise from sea fog in advance.

Development of Optimum Traffic Safety Evaluation Model Using the Back-Propagation Algorithm (역전파 알고리즘을 이용한 최적의 교통안전 평가 모형개발)

  • Kim, Joong-Hyo;Kwon, Sung-Dae;Hong, Jeong-Pyo;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.679-690
    • /
    • 2015
  • The need to remove the cause of traffic accidents by improving the engineering system for a vehicle and the road in order to minimize the accident hazard. This is likely to cause traffic accident continue to take a large and significant social cost and time to improve the reliability and efficiency of this generally poor road, thereby generating a lot of damage to the national traffic accident caused by improper environmental factors. In order to minimize damage from traffic accidents, the cause of accidents must be eliminated through technological improvements of vehicles and road systems. Generally, it is highly probable that traffic accident occurs more often on roads that lack safety measures, and can only be improved with tremendous time and costs. In particular, traffic accidents at intersections are on the rise due to inappropriate environmental factors, and are causing great losses for the nation as a whole. This study aims to present safety countermeasures against the cause of accidents by developing an intersection Traffic safety evaluation model. It will also diagnose vulnerable traffic points through BPA (Back -propagation algorithm) among artificial neural networks recently investigated in the area of artificial intelligence. Furthermore, it aims to pursue a more efficient traffic safety improvement project in terms of operating signalized intersections and establishing traffic safety policies. As a result of conducting this study, the mean square error approximate between the predicted values and actual measured values of traffic accidents derived from the BPA is estimated to be 3.89. It appeared that the BPA appeared to have excellent traffic safety evaluating abilities compared to the multiple regression model. In other words, The BPA can be effectively utilized in diagnosing and practical establishing transportation policy in the safety of actual signalized intersections.