• Title/Summary/Keyword: Transportation network for analysis

Search Result 432, Processing Time 0.05 seconds

Evaluation of Green House Gases (GHGs) Reduction Plan in Combination with Air Pollutants Reduction in Busan Metropolitan City in Korea

  • Cheong, Jang-Pyo;Kim, Chul-Han;Chang, Jae-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.228-236
    • /
    • 2011
  • Since most Green House Gases (GHGs) and air pollutants are generated from the same sources, it will be cost-effective to develop a GHGs reduction plan in combination with simultaneous removal of air pollutants. However, effects on air pollutants reduction according to implementing any GHG abatement plans have been rarely studied. Reflecting simultaneous removal of air pollutants along with the GHGs emission reduction, this study investigated relative cost effectiveness among GHGs reduction action plans in Busan Metropolitan City. We employed the Data Envelopment Analysis (DEA), a methodology that evaluates relative efficiency of decision-making units (DMUs) producing multiple outputs with multiple inputs, for the investigation. Assigning each GHGs reduction action plan to a DMU, implementation cost of each GHGs reduction action plan to an input, and reduction potential of GHGs and air pollutants by each GHGs reduction action plan to an output, we calculated efficiency scores for each GHGs reduction action plan. When the simultaneous removal of air pollutants with the GHGs reduction were considered, green house supply-insulation improvement and intelligent transportation system (ITS) projects had high efficiency scores for cost-positive action plans. For cost-negative action plans, green start network formation and running, and daily car use control program had high efficiency scores. When only the GHGs reduction was considered, project priority orders based on efficiency scores were somewhat different from those when both the removal of air pollutants and GHGs reduction were considered at the same time. The expected action plan priority difference is attributed to great difference of air pollutants reduction potential according to types of energy sources to be reduced.

Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks (Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성)

  • Kim, Hyeonho;Han, Seokmin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.23-31
    • /
    • 2020
  • This study was carried out to generate various images of railroad surfaces with random defects as training data to be better at the detection of defects. Defects on the surface of railroads are caused by various factors such as friction between track binding devices and adjacent tracks and can cause accidents such as broken rails, so railroad maintenance for defects is necessary. Therefore, various researches on defect detection and inspection using image processing or machine learning on railway surface images have been conducted to automate railroad inspection and to reduce railroad maintenance costs. In general, the performance of the image processing analysis method and machine learning technology is affected by the quantity and quality of data. For this reason, some researches require specific devices or vehicles to acquire images of the track surface at regular intervals to obtain a database of various railway surface images. On the contrary, in this study, in order to reduce and improve the operating cost of image acquisition, we constructed the 'Defective Railroad Surface Regeneration Model' by applying the methods presented in the related studies of the Generative Adversarial Network (GAN). Thus, we aimed to detect defects on railroad surface even without a dedicated database. This constructed model is designed to learn to generate the railroad surface combining the different railroad surface textures and the original surface, considering the ground truth of the railroad defects. The generated images of the railroad surface were used as training data in defect detection network, which is based on Fully Convolutional Network (FCN). To validate its performance, we clustered and divided the railroad data into three subsets, one subset as original railroad texture images and the remaining two subsets as another railroad surface texture images. In the first experiment, we used only original texture images for training sets in the defect detection model. And in the second experiment, we trained the generated images that were generated by combining the original images with a few railroad textures of the other images. Each defect detection model was evaluated in terms of 'intersection of union(IoU)' and F1-score measures with ground truths. As a result, the scores increased by about 10~15% when the generated images were used, compared to the case that only the original images were used. This proves that it is possible to detect defects by using the existing data and a few different texture images, even for the railroad surface images in which dedicated training database is not constructed.

Characterization of Fracture System for Comprehensive Safety Evaluation of Radioactive Waste Disposal Site in Subsurface Rockmass (방사성 폐기물 처분부지의 안정성 평가검증을 위한 균열암반 특성화 연구)

  • 이영훈;신현준;김기인;심택모
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.111-119
    • /
    • 1999
  • The purpose of this study is the simulation of discontinuous rockmass and identification of characteristics of discontinuity network as a branch of the study on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste. In this study the site for LPG underground storage was selected for the similarities of the conditions which were required for disposal site of radioactive waste. Through the identification of hydraulic properties. characteristics of discontinuities and selection of discontinuity model around LPG underground storage facility. the applications of discrete fracture network model were evaluated for the analysis of pathway. The orientation and spatial density of discontinuities are primarily important elements for the simulation of groundwater and solute transportation in discrete fracture network model. In this study three fracture sets identified and the spatial intensity (P$_{32}$) of discontinuities is revealed as 0.85 $m^2$/㎥. The conductive fracture intensity (P$_{32c}$) estimated for the simulation area around propane cavern (200${\times}$200${\times}$200) is 0.536 $m^2$/㎥. Truncated conductive fracture intensity (T-P$_{32c}$) is calculated as 0.26 $m^2$/㎥ by eliminating the fracture with the iowest transmissivity and based on this value the pathway from the water curtain to PC 2. PC 3 analyzed.

  • PDF

A Study on Improving Scheme and An Investigation into the Actual Condition about Components of Physical Distribution System (물류시스템 구성요인에 관한 실태분석과 개선방안에 관한 연구)

  • Kim, Kyeong-Cho
    • Journal of Distribution Science
    • /
    • v.7 no.4
    • /
    • pp.47-56
    • /
    • 2009
  • The purpose of this study is to present an alternative improving the efficient and reasonable of the physical distribution system management is influenced by many factors. Therefore, the study depends on the documentary method and survey method to achieve the purpose of this study. The major components of a physical distribution system are refers to as elements, include warehouse·storage system, transportation system, inventory system, physical distribution information system. The factors used in this study are ① factor of product(quality·A/S·added value of product·adaption of product·technical competitive power to other enterprises), ② factor of market(market channel·kinds of customer·physical distribution share), ③ factor of warehouse·storage(warehouse design·size·direction·storage ability·warehouse quality), ④ factor of transportation(promptness·reliability·responsibility·kinds of transportation·cooperation united transportation system·national transportation network), ⑤ factor of packaging (packaging design·material·educating program·pollution degree measure program), ⑥ factor of inventory(ordinary inventory criterion·consistence for inventories record), ⑦ factor of unloaded(unloaded machine·having machine ratio), ⑧ factor of information system (physical distribution quantity analysis·usable computer part), ⑨ factor of physical distribution cost(sales ratio to product) ⑩ factor of physical distribution system(physical distribution center etc). The implication of this study can be summarized as follows: ① In firms that have not adopted a systems integrative approach, physical distribution is a fragmented and often uncoordinated set of activities spread throughout various functions with function having its own set of priorities and measurements. ② The physical distribution is recognized as more an important strategic factor than a simple cost reduction factor, ③ It can be used a strategic competition tool to enterprise.

  • PDF

A study on the estimation of AADT by short-term traffic volume survey (단기조사 교통량을 이용한 AADT 추정연구)

  • 이승재;백남철;권희정
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • AADT(Annual Average Daily Traffic) can be obtained by using short-term counted traffic data rather than using traffic data collected for 365 days. The process is a very important in estimating AADT using short-term traffic count data. Therefore, There have been many studies about estimating AADT. In this Paper, we tried to improve the process of the AADT estimation based on the former AADT estimation researches. Firstly, we found the factor showing differences among groups. To do so, we examined hourly variables(divided to total hours, weekday hours. Saturday hours, Sunday hours, weekday and Sunday hours, and weekday and Saturday hours) every time changing the number of groups. After all, we selected the hourly variables of Sunday and weekday as the factor showing differences among groups. Secondly, we classified 200 locations into 10 groups through cluster analysis using only monthly variables. The nile of deciding the number of groups is maximizing deviation among hourly variables of each group. Thirdly, we classified 200 locations which had been used in the second step into the 10 groups by applying statistical techniques such as Discriminant analysis and Neural network. This step is for testing the rate of distinguish between the right group including each location and a wrong one. In conclusion, the result of this study's method was closer to real AADT value than that of the former method. and this study significantly contributes to improve the method of AADT estimation.

Changes in Public Bicycle Usage Patterns before and after COVID-19 in Seoul (코로나19 전후 서울시 공공 자전거 이용 패턴의 변화)

  • Il-Jung Seo;Jaehee Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.139-149
    • /
    • 2021
  • Ddareungi, a public bicycle service in Seoul, establishes itself as a means of daily transportation for citizens in Seoul. We speculated that the pattern of using Ddareungi may have changed since COVID-19. This study explores changes in using Ddareungi after COVID-19 with descriptive statistical analysis and network analysis. The analysis results are summarized as follows. The average traveling distance and average traveling speed have decreased over the entire time in a day since COVID-19. The round trip rate has increased at dawn and morning and has decreased in the evening and night. The average weighted degree and average clustering coefficient have decreased, and the modularity has increased. The clusters, located north of the Han River in Seoul, had a similar geographic distribution before and after COVID-19. However, the clusters, located south of the Han River, had different geographic distributions after COVID-19. Traveling routes added to the top 5 traffic rankings after COVID-19 had an average traveling distance of fewer than 1,000 meters. We expect that the results of this study will help improve the public bicycle service in Seoul.

A Study on Life-log Analysis and Monitoring System for Disabled Person Using Smart Media (스마트 미디어를 활용한 장애인 라이프 로그의 분석 및 모니터링 시스템에 관한 연구)

  • Hwang, Myong-Gu;Lee, Sang-Moon;Seo, Jeong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.99-106
    • /
    • 2012
  • In recent years, many researchers studies to promote the welfare of disabled people using IT technology. In particular, their suggestions are used a lot of mobile sensor installed on the street. These systems are acquired and to store the data sent to the server over the network, and by analyzing the users life log to judge of their risk state. In particular, persons with disabilities are exposed to various risks. So, they must need to the guardians if he go out. Thus, this study is a method for alleviating these so much pressure to smart appliances and impaired life log analysis system.

Analysis of the Effects of Radio Traffic Information on Urban Worker's Travel Choice Behavior (교통방송이 제공하는 교통정보가 직장인의 통행행태에 미치는 영향 분석)

  • 윤대식
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.33-43
    • /
    • 2002
  • Travel choice behavior is affected by real-time traffic information. Recently, in urban area, real-time traffic information is provided by several instruments such as transportation broadcasting, internet PC network and variable message sign, etc. Furthermore, it has been increasing for urban travelers to use real-time traffic information provided by several instruments. The purpose of this study is to analyze the effects of advanced traveler information on urban worker's travel choice behavior. Among several Advanced Traveler Information System(ATIS) employed in urban area. This study focuses on examining the effects of transportation broadcasting on urban worker's travel choice behavior. This study attempts to examine traveler's mode change behavior in the pre-trip stage and traveler's route change behavior in the on-route stage. For this study, the survey data collected from Daegu City in 2000 is used. For empirical analysis, several nested logit models are estimated, and among them, the best models are reported in this paper. Furthermore, based on the empirical models estimated for this research, important findings and their policy implications are discussed.

A Study on the Constructing Discrete Fracture Network in Fractured-Porous Medium with Rectangular Grid (사각 격자를 이용한 단열-다공암반내 분리 단열망 구축기법에 대한 연구)

  • Han, Ji-Woong;Hwang, Yong-Soo;Kang, Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • For the accurate safety assessment of potential radioactive waste disposal site which is located in the crystalline rock it is important to simulate the mass transportation through engineered and natural barrier system precisely, characterized by porous and fractured media respectively. In this work the methods to construct discrete fracture network for the analysis of flow and mass transport through fractured-porous medium are described. The probability density function is adopted in generating fracture properties for the realistic representation of real fractured rock. In order to investigate the intersection between a porous and a fractured medium described by a 2 dimensional rectangular and a cuboid grid respectively, an additional imaginary fracture is adopted at the face of a porous medium intersected by a fracture. In order to construct large scale flow paths an effective method to find interconnected fractures and algorithms of swift detecting connectivities between fractures or porous medium and fractures are proposed. These methods are expected to contribute to the development of numerical program for the simulation of radioactive nuclide transport through fractured-porous medium from radioactive waste disposal site.

  • PDF

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.