• Title/Summary/Keyword: Transportation cask

Search Result 40, Processing Time 0.02 seconds

Structural integrity of KJRR-F fresh nuclear fuel under vehicle-induced vibration for normal transport condition

  • Jeong, Gil-Eon;Yang, Yun-Young;Bang, Kyoung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1355-1362
    • /
    • 2022
  • Nuclear fuel, including its fresh state, must be handled safely due to its critical and hazardous nature. Under normal transport conditions, several interactions take place among different components, such as transport cask used for loading the nuclear fuel and tie-down structure to attach with the vehicle. To ensure structural integrity of the nuclear fuel, vibrations and impacts transmitted from the vehicle must be sufficiently reduced. Therefore, in this study, we conducted two transportation tests from Daejeon to Kijang in Korea to verify the vehicle-induced vibrational characteristics of the KJRR-F fresh nuclear fuel when transported under normal transport conditions. The speed and location of the vehicle were obtained via GPS, and the accelerations between the vehicle and the KJRR-F fresh nuclear fuel were measured. Additionally, using the acceleration results, a structural analysis was conducted to confirm the structural integrity of the nuclear fuel under the most severe conditions during normal transport.

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

Structural Safety Analysis of Lifting Device for Spent Fuel Dual-purpose Metal Cask (사용후핵연료 금속겸용용기 인양장비의 구조 안전성 해석)

  • Moon, Tae-Chul;Baeg, Chang-Yeal;Yun, Si-Tae;Choi, Byung-Il;Jung, In-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.299-314
    • /
    • 2014
  • A lifting device is used to deal with transport cask for the transportation of spent fuels from nuclear power plants. This study performed theoretical analysis and numerical simulation to evaluate the structural integrity of the lifting device based on Nuclear Safety and Security Commission(NSSC) Notice No.2013-27 and US 10CFR Part 71 ${\S}71.45$. The results of theoretical analysis showed that the maximum stresses of all components were below the allowable values. This result confirmed that the lifting device was structurally safe during operation. The results of finite element analysis also showed that it was evaluated to satisfy the design criteria bothyielding and ultimate condition. All components have been shown to ensure the structural safety due to sufficient safety margins. In other words, the safety factor was 3 or more for the yielding condition and was 5 or more for the ultimate condition.

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

Size Optimization of Impact Limiter in Radioactive Material Transportation Package Based on Material Dynamic Characteristics (재료동특성에 기초한 방사성물질 운반용기 충격완충체의 치수최적설계)

  • Choi, Woo-Seok;Nam, Kyoung-O;Seo, Ki-Seog
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • According to IAEA regulations, a transportation package of radioactive material should perform its intended function of containing the radioactive contents after the drop test, which is one of hypothetical accident conditions. Impact limiters attached to a transport cask absorb the most of impact energy. So, it is appreciated to determine properly the shape, size and material of impact limiters. A material data needed in this determination is a dynamic one. In this study, several materials considered as those of impact limiters were tested by a drop weight facility to acquire dynamic material characteristics data. Impact absorbing volume of the impact limiter was derived mathematically for each drop condition. A size optimization of impact limiter was conducted. The derived impact absorbing volumes were applied as constraints. These volumes should be less than critical volumes generated based on the dynamic material characteristics. The derived procedure to decide the shape of impact limiter can be useful at the preliminary design stage when the transportation package's outline is roughly determined and applied as input value.

  • PDF

Quantitative Evaluation of Criticality According to the Major Influence of Applied with Burnup Credit on Dual-purpose Metal Cask (국내 금속겸용용기의 연소도 이득효과 적용 시 주요영향인자에 따른 정량적 핵임계 평가)

  • Dho, Ho-seog;Kim, Tae-man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.141-154
    • /
    • 2015
  • In general, conventional criticality analysis for spent fuel transport/storage systems have been performed based on the assumption of fresh fuel concerning the potential uncertainties from number density calculations of actinide nuclides and fission products in spent fuel. However, these evaluation methods cause financial losses due to an excessive criticality margin. In order to overcome this disadvantage, many studies have recently been conducted to design and commercialize a transportation and storage cask applied to the Burnup Credit (BUC). This study conducted an assessment to ensure criticality safety for reactor operating parameters, axial burn-up profiles and misload accident conditions, which are the factors that are likely to affect criticality safety when the BUC is applied to the dual-purpose cask under development at the KOrea RADioactive waste agency (KORAD). As a result, it was found that criticality resulting from specific power, changed substantially and relied on conditions of low enrichment and high burn-up. Considering the end effect in the case of high burn-up produced a positive-definite result. In particular, the increment of maximum effective multiplication factors due to misloading was 0.18467, confirming that misload is a factor that must be taken into account when applying the BUC. The results of this study may therefore be utilized as references in developing technologies to apply the BUC to domestic models and operational procedures or preventing any misload accidents during the process of spent fuel loading.

Verification of the Radiation Shielding Analysis of Shipping Cask Using Deterministic and Probabilistic Methods (결정론적인 방법과 확률론적인 방법을 이용한 수송용기 방사선차폐해석의 비교 및 검증)

  • Yoon, Jeong-Hyoung;Lee, In-Koo;Bang, Kyoung-Sik;Choi, Byoung-Il;Kim, Chong-Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • In this study, to set-up the calculation method of radiation shielding of the KSC-4 shipping cask which is being used for spent fuel transportation, the pre-existing two calculation methods, deterministic and probabilistic methods were tested. For the first, the DOT4.2 computer code adopting the deterministic theory was applied for the calculation of effective neutron shielding under assumption of continuous wall thickness of the cask. To verify the first results, the probabilistic theory was used as an alternate calculation. In this case MCNP4A computer code adopting the probabilitic theory was used. And same approximation was obtained from the two different shielding calculations. From the results, it could be confirmed that the design and calculation method used for the radiation shielding of the KSC-4 was adequate and sufficiently safe to meet the design and QA requirements of 10CFR71 Appendix H.

  • PDF

The Option Study of Oversea Shipment of DUPIC Fuel Elements to Canada (고방사성 산화물핵연료의 해외수송방안 분석)

  • 이호희;박장진;양명승;서기석
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.614-620
    • /
    • 2003
  • KAERI has developed DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF To verify the performance of DUPIC nuclear fuel, irradiation test at the operating conditions of commercial power plant is essential. Since the HANARO research reactor of KAERI does not have fuel test loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6kg). This transportation package is classified as the 7-th class according to "recommendation on the transport of dangerous goods" made by the United Nations. In case of air shipment, until now, there is no proper air transportation cask for DUPIC fuel. In case of sea transportation is possible but requires very high cost.high cost.

  • PDF

Technology Trends in Spent Nuclear Fuel Cask and Dry Storage (사용후핵연료 운반용기 및 건식저장 기술 동향)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Yeong Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

Optimization of radiation shields made of Fe and Pb for the spent nuclear fuel transport casks

  • V.G. Rudychev;N.A. Azarenkov;I.O. Girka;Y.V. Rudychev
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.690-695
    • /
    • 2023
  • Recommendations are given to improve the efficiency of radiation protection of transport casks for SNF transportation. The attenuation of ${\gamma}$-quanta of long-lived isotopes 134Cs, 137mBa(137Cs), 154Eu and 60Co by optimizing the thicknesses and arrangement of layers of Fe and Pb radiation shields of transport casks is studied. The fixed radiation shielding mass (fixed mass thickness) is chosen as the main optimization criterion. The effect of the placement order of Fe and Pb layers in a combined two-layer radiation shield with an equivalent thickness of 30 cm is studied in detail. It is shown that with the same mass thicknesses of the Fe and Pb layers, the placement of Fe in the first layer, and Pb - in the second one provides more than twofold attenuation of ${\gamma}$-quanta compared to the reverse placement: Pb - in the first layer, Fe - in the second. The increase in the efficiency of attenuation of ${\gamma}$-quanta for TC with combined shielding of Fe and Pb is shown to be achieved by designing the first layer of radiation shielding around the canister with SNF from Fe of the maximum possible thickness.