• Title/Summary/Keyword: Transportation Simulation

검색결과 1,306건 처리시간 0.023초

Revolution of nuclear energy efficiency, economic complexity, air transportation and industrial improvement on environmental footprint cost: A novel dynamic simulation approach

  • Ali, Shahid;Jiang, Junfeng;Hassan, Syed Tauseef;Shah, Ashfaq Ahmad
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3682-3694
    • /
    • 2022
  • The expansion of a country's ecological footprint generates resources for economic development. China's import bill and carbon footprint can be reduced by investing in green transportation and energy technologies. A sustainable environment depends on the cessation of climate change; the current study investigates nuclear energy efficiency, economic complexity, air transportation, and industrial improvement for reducing environmental footprint. Using data spanning the years 1983-2016, the dynamic autoregressive distributed lag simulation method has demonstrated the short- and long-term variability in the impact of regressors on the ecological footprint. The study findings revealed that economic complexity in China had been found to have a statistically significant impact on the country's ecological footprint. Moreover, the industrial improvement process is helpful for the ecological footprint in China. In the short term, air travel has a negative impact on the ecological footprint, but this effect diminishes over time. Additionally, energy innovation is negative and substantial both in the short and long run, thus demonstrating its positive role in reducing the ecological footprint. Policy implications can be extracted from a wide range of issues, including economic complexity, industrial improvement, air transportation, energy innovation, and ecological impact to achieve sustainable goals.

복합 통행행태모형을 이용한 동적 기.종점 통행량 추정 (Dynamic OD Estimation with Hybrid Discrete Choice of Traveler Behavior in Transportation Network)

  • 김채만;조중래
    • 대한교통학회지
    • /
    • 제24권6호
    • /
    • pp.89-102
    • /
    • 2006
  • 정적 기 종점 통행량을 가정함으로써 갖는 동적 시뮬레이션 모형의 현실 모사 능력의 한계를 극복하기 위하여 동적 기 종점 통행량 추정 모형을 개발하였다 동적 기 종점 통행량 추정은 통행자의 출발시간, 통행수단. 통행경로 선택 행태모형을 결합한 복합통행행태 수요시뮬레이션 모형을 이용하였다 본 연구에서 개발된 수요 시뮬레이션 모형과 기 개발된 공급 시뮬레이션 모형인 LiCROSiM-P를 결합하여 통합 시뮬레이션 모형을 구축하였다. 단속류/연속류가 공존하는 다경로 가로망에서 출발시간/수단선택/통행경로 선택모형은 AGtt(기 종점통행시간의 시뮬레이션 시간과 기대치의 차이 백분율)는 수렴하지 않고, 평균스케줄지체는 안정 상태로 수렴하는 것으로 나타났다. 통합 시뮬레이션 모형은 교통시설공급 변화와 통행자의 속성 변화에 따른 기 종점 통행량 변화 추정과 효과분석이 가능함을 모형의 적용을 통해 제시하였다. 따라서 통합시뮬레이션 모형은 수요관리정책, 교통시설변화, 교통정보제공 등이 가져오는 출발시간, 통행수단, 통행경로변화를 반영한 시스템의 효과분석이 가능하다

고속열차의 지하정거장 통과 시 발생하는 공기역학적 영향에 대한 전산유체해석 연구 (A STUDY ON THE AERODYNAMIC EFFECTS WHEN A HIGH-SPEED TRAIN PASSING THROUGH AN UNDERGROUND STATION USING COMPUTATIONAL FLUID DYNAMICS)

  • 임광만;김영매;방명석;권혁빈
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.61-70
    • /
    • 2016
  • Dong-tan Station, shared by high-speed railway and urban express railway, is a very complicated underground station having 6 tracks together with barrier and shafts between them, therefore it seems very hard to investigate the aerodynamic effects including the pressure variation and train gust in the station when a high-speed train runs through it. In this study, the aerodynamic effects on the structures and platform passengers when a high-speed train runs through an underground station have been studied using Computational Fluid Dynamics. STAR-CCM+ has been employed for numerical simulation based on Navier-Stokes equation and 2-equation turbulence model and moving mesh scheme supported by STAR-CCM+ has also been used to represent the relative motion between a train and station. Based on the simulation results, the unsteady flow fields in the underground station induced by the high-speed train have been analyzed and the pressures on the PSDs and pressure variation at the platform have quantitatively assessed.

재고풀링효과의 시뮬레이션 연구 (A Simulation Study for the Inventory Pooling Effect)

  • 정재헌
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.211-218
    • /
    • 2012
  • We analyzed the effect of inventory pooling on the system where multiple depot was used to replenish retailers and where inventories are kept only on the depots. Inventory pooling consists of inventory integration and inventory exchange. We used simulation for checking the cost saving effect of reducing the number of depot (Inventory Integration) for the case when inventories kept on every depots are commonly used for all retailers when certain depot have stock out for their retailer assigned to them (Inventory Exchange) with the constraint of service level. Simulation on wide range of parameter settings results show that cost saving effect from inventory integration diminishes when transportation cost between depot and retailers or stock out cost, or retailer number increases. The effect becomes stronger when the demands on retailers have bigger variance or average. Also the results show that the cost saving effect from inventory exchange becomes stronger on the same situation when inventory integration effect becomes stronger.

컨테이너 터미널 중장기계획 수립을 위한 시뮬레이션 모형 개발 -안벽과 장치장 중심- (Simulation Models for Container Terminal Planning)

  • 남기찬;곽규석;신재영;김우선
    • 대한교통학회지
    • /
    • 제17권1호
    • /
    • pp.159-171
    • /
    • 1999
  • 컨테이너 터미널은 게이트 시스템, 장치시스템, 이송시스템, 적양하시스템 등의 하부시스템으로 구성되어 있어서 시스템의 최적화가 요구되며, 운영에 있어서도 장비, 인력, 장치장 등 제한된 자원을 효율적으로 사용하는 것이 터미널 경쟁력 강화 측면에서 중요하다. 본 연구는 신항만 개발시 터미널 설계에 사용될 수 있는 시뮬레이션 모형을 제안하는 것이 목적이다. 문헌 조사를 통하여 기존 연구의 한계점을 도출하고 이를 보완하는 시뮬레이션 모형을 설계하고 모형을 개발하였다. 또한 가상의 터미널 개발을 가정하고 일부 모듈을 적용하여 신항만 개발시 요구되는 안벽길이, 안벽 크레인 수, 장치장 규모 등을 도출함으로써 제안된 시뮬레이션 모형의 활용 방안을 소개하였다.

  • PDF

노선배정시 트럭 교통량을 고려한 BPR 함수 개발 (Development of BPR Functions with Truck Traffic Impacts for Network Assignment)

  • 윤성순;윤대식
    • 대한교통학회지
    • /
    • 제22권4호
    • /
    • pp.117-134
    • /
    • 2004
  • 도로교통량의 상당부분을 차지하는 트럭교통(truck traffic)은 교통혼잡, 주차, 교통안전 문제의 큰 요인이 되고 있다. 그러나 그 동안 교통수요예측 및 교통계획에서 트럭교통은 사람교통(passenger trip)에 비해 상대적으로 그 중요성이 간과되어 왔다. 트럭교통의 정확한 모형화가 선행되지 않으면 각종 교통수요예측 및 교통정책의 신뢰성은 낮아질 것이다. 본 연구의 목적은 교통수요예측 과정에서 트럭교통을 교통망(network)에 배정하는 기법을 개선하는데 있다. 이를 위해 본 연구에서는 노선배정(network assignment)의 핵심적인 요소인 기존의 BPR(Bureau of Public Road) 함수에 트럭 교통량 변수를 포함하여, 수정된 새로운 BPR 함수를 개발하였다. 본 연구에서 제시된 방법은 교통수요예측시 트럭 교통량을 고려하여 보다 현실적이고 신뢰성 있는 도로교통수요 예측치를 담보할 수 있을 것으로 기대된다.

Shear strength of match-cast-free dry joint in precast girders

  • Jiang, Haibo;Feng, Jiahui;Xiao, Jie;Chen, Mingzhu;Liang, Weibin
    • Computers and Concrete
    • /
    • 제26권2호
    • /
    • pp.161-173
    • /
    • 2020
  • Shear keys in precast concrete segmental bridges (PCSBs) are usually match-casting which is very labour intensive. In this research, an innovative match-casting-free construction was proposed by leaving small gap between the convex and the concave castellated shear keys in the joints of PCSBs. Specimen experiment, shear strength analysis and numerical simulation were conducted, investigating the loading performance of this new type of dry joints, the gap dry joints. Compared with match-casting joint specimens, it has been found from experiment that shear capacity of gap joint specimens significantly decreased ranging from 17.75% to 42.43% due to only partially constrained and contacted in case of gap dry joints. Through numerical simulation, the effects of bottom contacting location, the heights of the gap and the shear key base were analyzed to investigate strength reduction and methods to enhance shear capacity of gap joint specimens. Numerical results proved that shear capacity of gap dry joints under full contact condition was higher than that under partial contact. In addition, left contact destroyed the integrity of shear keys, resulting in significant strength reduction. Larger shear key base remarkably increased shear capacity of the gap joint. Experimental tests indicated that AASHTO provision underestimated shear capacity of the match-casting dry joint specimens, while the numerical results for the gap dry joint showed that AASHTO provision underestimated shear capacity of full contact specimens, but overestimated that of left contact specimens.

SWAT 모델을 이용한 강우특성 변화에 의한 퇴적물-유출량 간의 관계 평가 (Assessment of Relationship between Sediment-Discharge Based on Rainfall Characteristic using SWAT Model)

  • 김지수;김민석;조용찬
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.118-129
    • /
    • 2021
  • The sediment transportation caused by soil erosion due to rainfall-discharge in the large watershed scale plays critical role in human society. The relationship between rainfall-discharge-sediment transportation is depending on the start time of rainfall and end of rainfall but, the studies related with rainfall characteristics are insufficient. In this study, The Soil and Water Assession Tool (SWAT) model was used to study the relationship between rainfall-discharge-sediment transportation at the Sook river watershed which is monitored by the Ministry of Environment. To do this, first of all, the sensitivity analysis about model attributes was performed using monitored data. The accuracy analysis of SWAT model was conducted using the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and the coefficient of determination (R2). After that, it was studied what results could be obtained according to changes in rainfall timing and end points. In the result of discharge simulation, the modified rainfall values (sum of total rainfall starting time and end time) showed more high accuracy values (R2:0.90, NSE: 0.8) than original rainfall values (R2:0.76, NSE: 0.72). In the result of sediment transportation simulation, during calibration had more resonable results(R2:0.87, NSE: 0.86) than compared with original rainfall values (R2:0.44, NSE: 0.41). However, validation results of sediment transportation simulation showed low accuracy values compared with calibration results. This results maybe cause monitoring periods of sediment flow compared with discharge monitoring periods. Nevertheless, since rainfall characteristic plays critical rule in model results, continuous research on rainfall characteristic is needed.

GNSS Center of Excellence for Safety Critical Applications, Simulation, Test & Certifications - GAUSS

  • Evers, H.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.153-155
    • /
    • 2006
  • A major advantage of the area in and around Braunschweig is its concentration of major research institutes and small to large enterprises dealing with different modes of transportation. For many years, aviation has been a particular focus. The research institutes have aircraft and helicopters equipped especially for research projects, as well as other laboratory equipment, allowing simulation and testing of air traffic application both virtually and on real aircraft. In addition, with the Luftfahrtbundesamt (equivalent organization to FAA) and the Bundesstelle $f{\"{u}}r$ Flugunfalluntersuchung (equivalent to NTSB) both located at the Research Airport, it enables direct contact with two key air-traffic safety authorities. The institutes of DLR and the Technical University of Braunschweig are very active in rail transportation applications. Cooperation with the market leader in rail automation - Siemens Rail Automation, also located in Braunschweig - and with other companies in the Braunschweig region means that safety-critical road applications and mobility research is available due to the activities of a number of institutes. Cooperation with Volkswagen (VW) and other companies in the region ensure access to the market leaders' know-how in this sector. Current European activities within framework of the Galileo project offer particularly good opportunities for the Research Airport to leverage its expertise and position itself internationally as a specialist in safety-critical transport applications - the centre is an initiative of Niedersachsen and the Ministry of Economic Affairs, Labour and Transport Location and navigation plays a central role in all modes of transport - air, road and rail. The market is being revolutionized by the increasing integration of GNSS. The realization of the Galileo system will provide additional opportunities for the Research Airport: Galileo as a civil operated system offers service guarantees especially in the area of safety-critical applications in transportation. Notably standards, processes and authorizations related to the certification of safety-critical applications in the areas of air, road and rail transportation are still to be determined. GAUSS, located at the Research Airport Braunschweig, as an European centre of excellence for simulation, testing and certification of safety-critical applications can offer its expertise to validate the services guaranteed by the Galileo concessionaire.

  • PDF

Study of damage safety assessment for a ship carrying radioactive waste

  • Lee, Dong-Kon;Choi, Jin;Park, Beom-Jin;Kang, Hee-Jin;Lim, Suk-Nam
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.141-150
    • /
    • 2012
  • Ship damage caused by maritime casualties leads to marine pollution and loss of life and property. To prevent serious damage from maritime casualties, several types of safety regulations are applied in ship design. Damage stability regulation is one of the most important safety issues. Designs of ships for long international voyages must comply with these regulations. Current regulations, however, do not consider the characteristics of the operating route of each ship and reflect only ship size and type of cargo. In this paper, a damage safety assessment was undertaken for a ship carrying radioactive waste in actual wave conditions. Damage cases for safety assessment were constructed on the basis of safety regulations and related research results. Hull form, internal arrangement, loading condition and damage condition were modeled for damage safety simulation. The safety simulation was performed and analyzed for 10 damage cases with various wave heights, frequency and angle of attack on an operating route. Based on evaluation results, a design alternative was generated, and it was also simulated. These results confirmed that damage safety analysis is highly important in the design stage in consideration of the operating route characteristics by simulation. Thus a ship designer can improve safety from damage in this manner.