• Title/Summary/Keyword: Transportation Carbon Dioxide Emission

Search Result 39, Processing Time 0.026 seconds

Impact of Transportation on Air Quality and Carbon Emissions in Developing Countries: A Case of Myanmar (개발도상국의 교통수단이 대기 질 및 탄소배출에 미치는 영향: 미얀마를 중심으로)

  • Wut Yee Lwin;Byoung-Jo Yoon
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.231-240
    • /
    • 2023
  • Purpose: The purpose of this study is to analyze air quality and carbon emissions in developing countries, particularly Myanmar, and explore the impact of transportation on CO2 emissions during peak hours relative to free-flow conditions. Method: This study conducted a traffic survey in two major cities in Myanmar to quantify carbon dioxide emissions from the transportation sector, using IPCC's tier 1 and tier 2 approaches, with statistical analysis performed using Python 3 and Microsoft Excel for comparative analysis of critical factors in CO2 emissions. Result: The result of this study is an estimate of the vehicle kilometers traveled (VKT) and fuel consumption in Yangon city for the year 2019, based on data from various sources including the Myanmar Statistical data base, YUTRA project survey, and Ministry of Electric and Energy. The study also analyzes the average travel time index (TTI) for the four roads in Yangon, which indicates the impact of congestion on vehicle travel time and CO2 emissions. Overall, the study provides important insights into the transport sector in Yangon city and can be used to inform policies aimed at reducing greenhouse gas emissions and improving traffic conditions. Conclusion: The study concludes that congestion plays a significant role in increasing fuel use and emission levels in the road transport sector in Myanmar. The analysis provides valuable insights into the impact of the sector on the environment and emphasizes the importance of addressing congestion to reduce fuel use and emissions. However, the study's scope is limited to Yangon city and Mandalay city, and some mean values may not accurately represent the entire country and other developing countries.

Improvement of Thermal Efficiency using Atkinson Cycle in a High-Compression Ratio, Spark-Ignition, Natural Gas Engine for Power Generation (고압축비 전기점화 천연가스 발전용 엔진에서 앳킨슨 사이클 적용을 통한 열효율 향상)

  • Junsun Lee;Hyunwook Park;Seungmook Oh;Changup Kim;Yonggyu Lee;Kernyong Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • Natural gas is a high-octane fuel that is effective in controlling knocking combustion. In addition, as a low-carbon fuel with a high hydrogen-carbon ratio, it emits less carbon dioxide and almost no particulate matter compared to conventional fossil fuels. Stoichiometric combustion engines equipped with a three-way catalyst are useful in various fields such as transportation and power generation because of their excellent exhaust emission reduction performance. However, stoichiometric combustion engines have a disadvantage of lower thermal efficiency compared to lean combustion engines. In this study, a combination of high compression ratio and Atkinson cycle was implemented in a 11 liter, 6-cylinder, spark-ignition engine to improve the thermal efficiency of the stoichiometric engine. As a result, pumping and friction losses were reduced and the operating range was extended with optimized Atkinson camshaft. Based on the exhaust gas limit temperature of 730℃, the maximum load and thermal efficiency were improved to BMEP 0.66 MPa and BTE 35.7% respectively.

Evaluation of Life Cycle Energy Consumption and CO2 Emission of Elementary School of Buildings (초등학교 건축물의 생애주기 에너지사용량 및 이산화탄소 배출량 평가)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • This study investigates and analyzes the total amount of energy consumption and $CO_2$ emission during the material manufacturing, transportation, construction, operation, and disposal phases of eight elementary school buildings in South Korea. Toward this ends, the hybrid LCA model is proposed. The life cycle energy consumption and $CO_2$ emission of eight case buildings are assessed using the hybrid LCA model with an assumption that the operation period is 40 years. As a result, the embodied(sum of the energy consumption in the material manufacturing, transportation and construction phases), operational and disposal energy were 2,279, 11,182, $228Mcal/m^2$, respectively, on average. The average embodied, operational, and disposal $CO_2$ emission were 604, 2,708, 60 kg-$CO_2/m^2$, respectively, on average. This result indicates that about 17% of life cycle energy (or $CO_2$ emission) is consumed in the material manufacturing, transportation and construction phases. Thus, it is necessary to consider the embodied energy and $CO_2$ emission to reduce the life cycle energy and $CO_2$ emission of school buildings. In addition, while the insulation standard of building have been provided based on the climate zone, energy consumption in operation phase still varied depending on the regions in this study. Thus, the insulation standard of building needs to be improved through considering the climate of regions in detail.

Life Cycle Assessment of Rural Community Buildings Using OpenLCATM DB (OpenLCATM DB를 이용한 농촌 공동체 건축물 전과정평가)

  • Kim, Yongmin;Lee, Byungjoon;Yoon, Seongsoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.97-105
    • /
    • 2021
  • Most of the rural development projects for the welfare of residents are mainly new construction and remodeling projects for community buildings such as village halls and senior citizens. However, in the case of the construction industry, it has been studied that 23% of the total carbon dioxide emissions generated in Korea are generated in the building-related sector. (GGIC, 2015) In order to reduce the emission of environmental pollutants resulting from construction of rural community buildings, there is a need to establish a system for rural buildings by predicting the environmental impact. As a result of this study, the emissions of air pollutants from buildings in rural communities were analyzed by dividing into seven stages: material production, construction, operation, maintenance, demolition, recycling, and transportation activities related to disposal. As a result, 12 kg of carbon dioxide (CO), 0.06 kg of carbon monoxide (CO), 0.02 kg of methane (CH), 0.04 kg of nitrogen oxides (NO), 0.02 kg of sulfurous acid gas (SO), and non-methane volatile organics per 1m of buildings in rural communities It was analyzed that 0.02 kg of compound (NMVOC) and 0.00011 kg of nitrous oxide (NO) were released. This study proved that environmentally friendly design is possible with a quantitative methodology for the comparison of operating energy and air pollutant emissions through the design specification change based on the statement of the rural community building. It is considered that it can function as basic data for further research by collecting major structural changes and materials of rural community buildings.

A Study on Technology Priorities for Green Highway (녹색도로 구현을 위한 기술 우선순위 결정에 관한 연구)

  • Lee, Yu-Hwa;Cho, Won-Bum;Kim, Se-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.151-162
    • /
    • 2012
  • It is not surprising to hear news about irresistible natural disasters all over the world due to climate change. Korean Government has focused on developing a variety of green technologies to reduce green house gasses, in particular, carbon dioxide. This study suggested 18 technology divisions for achieving green highway technology development in six different sub-sectors considering life-cycle of roadway and surveyed 29 highway and/or transportation professionals of three institutes using AHP(Analytical Hierarchy Process) analysis to construct "Green Highway"and realize carbon emission reductions and energy use efficiency in a road sector in Korea. Expert Choice Software was used to rank 18 technology divisions weighted by two-level choices. Transport Operating Infrastructure Improvement, Roadway Policy Implementation, Green Transportation(such as Pedestrian and Bicycle) were highly ranked by respondents according to results of the AHP modeling. Among the 18 divisions, technology policy for supporting R&D investments from development to commercialization was ranked as the most significant one to be focused. Green Transportation Facility Design/Construction/Operation and Eco-Friendly Roadway Plan were followed as expected since professionals have thought that the planning/design step of the life-cycle is a starting point to reduce carbon dioxide from roads more and more. Additionally, comparing the results with the Government investment trend 2006-2011 for the roads, it can be interpreted that the Government should invest to the R&D area more widely than before to promote element and core technology development for Green Highway Construction. Above all, small and mid-sized businesses have to be invested as well as encouraged to undertake green highwayrelated objects to accomplish the divisions which ranked high.

Qualitative Changes in Grafted Cactus Cultivars during Simulated Transportation (모의운송시 접목선인장의 품종별 품질변화)

  • Yoon, Jung-Han;Song, Jong-Eun;Byoun, Hye-Jin;Park, Ju-Hyun;Kim, Young-Ho;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.575-582
    • /
    • 2011
  • This experiment was conducted to study the qualitative changes of grafted cactus after harvest and to examine the decomposition characteristics of pathogenic fungi which occurs or grows during the simulated shipping period. Plant materials with four varieties of Gymnocalycium mihanovichii var. friedrichii including, 'Hukwang', 'Huhong', 'Hwangwol', 'Yeunhwa' and two varieties of Chamaecereus silvestrii f. variegate such as 'Goldcrown' and 'Yellowcrown' were used. During the simulated shipping period, the fresh-weight, bulb diameter, carbon dioxide emission rate, and decomposition rate were observed. The regeneration rate and decomposition rate were observed for the grafted cactuses that were placed in a greenhouse environment with a temperature of $28{\pm}12^{\circ}C$ and humidity of $36{\pm}15.3%$ after 40 days of simulated shipping. There were reductions in the fresh-weight and bulb diameter in every variety as time passed while the carbon dioxide emission rate showed no meaningful difference by each variety. Furthermore, the decomposition rate in the scion was higher than in the stock. According to the analysis of pathogenic fungi by decomposition characteristics, Alternaria sp., Cladosporium sp., Colletotrichum sp., Fusarium sp., Penicillium sp. in G. mihanovichii var. friedrichii were found and Alternaria sp., Bipolaris sp., Cladospoirum sp. in C. silvestrii f. variegate were identified. Therefore, to maintain and improve the quality of grafted cactus, it is necessary to analyze the factors of decomposition from the time of harvest until the point of export and develop a process technology to minimize the decomposition rate.

Analysis of Energy Efficiency Design Index and Onboard Power Capacity for New Building Ships (신조선의 에너지효율설계지수와 선상 동력용량에 대한 분석)

  • Lee, D.C.;Millar Jr, Melchor M.;Nam, J.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.843-851
    • /
    • 2009
  • Much work has already been done to control and regulate the worldwide problems caused by climate change, particularly the issues on greenhouse gas (GHG) emissions. Carbon dioxide ($CO_2$), having the highest form of concentration among GHGs composed around 1.0 billion tons of emission, and comprises about 98% of the total emissions from the shipping industry. Korean trade mainly rely on the sea transportation. Korean ship tonnages that was brought about by shipbuilders all over the country, continues to grow annually due to the prevailing demands on goods or material supplies and depicting only a small part of the global maritime activity. Nowadays, new build ships coming from the Korean Shipbuilders are being optimized by hull, structure and appendages design, The operational capability of the propulsion and auxiliary machineries in its maximum capacity to achieve the highest possible efficiencies for energy and onboard power use to mitigate $CO_2$ emissions are continually being done through the help of research and development. In this paper, the energy efficiency design index and anboard power capacity of Korean new build ships have been analyzed with response to data collected by ship types, and its respective fuel consumption in relation to $CO_2$ emission results. In response to climate change convention outcome proposals, the best way for the new build ships to become energy efficient is by lowering its operational speed thru adopting the state of the art diesel propulsion engines, patronizing the best sailing practice to lower the transportation cost on the different sea trade routes also helps in $CO_2$ mitigation.

Measuring the Non-market Value of the Introduction of Electric Vehicles to National Parks Against Climate Change (기후변화의 대응수단으로서 국립공원 내 전기자동차 도입의 비시장적 가치 추정에 관한 탐색적 연구)

  • Kim, Sang-Tae;Min, Woong-Ki;Kim, Nam-Jo
    • Review of Culture and Economy
    • /
    • v.17 no.2
    • /
    • pp.81-102
    • /
    • 2014
  • As carbon dioxide, the main greenhouse gas, is generally emitted by vehicles, the development and distribution of electric cars is important for the sustainability of environmentally-friendly tourism, especially in national parks. National parks in Korea, however, still see the use of traditional vehicles powered by internal combustion engines in the handling of visitors and the transportation of goods and staff. Such engines being the cause of environmental problems such as exhaust emission and noise pollution, the introduction of electric cars in national parks is needed. This study aims to analyze the economic value of electric cars in national parks as well as contribute to the development of the Green Transportation model in tourism destinations. The study used a logit model to estimate the willingness to pay for the introduction of electric cars in national parks. Adults over the age of twenty, with gender and age apportioned equally, were surveyed using questionnaires that included dichotomous as well as demographic questions. The findings show that the amount an individual is willing to pay for the purpose of environmental conservation is 3,948 won, while the value the national parks would derive from the use of electric cars is 56,138,130,000 won. The introduction of electric cars in national parks is expected to offer both direct and indirect benefits while helping to improving the environment of the national parks by eliminating exhaust emission and noise. This introduction would also be a response to climate change that can be taken by society as a whole.

A Study on Evaluation of Plan to Improve Cycling Environment (자전거 주행환경 개선방안의 평가에 관한 연구)

  • Hwang, Jung-Hoon;Kim, Kap-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.203-213
    • /
    • 2005
  • Recently, with the increase of the interest to global environmental problems, bicycle has been recognized as the most environmentally friendly transportation mode. To promote cycling, it is necessary to ensure road space that bicycle can keep running safely and smoothly. This paper aims to evaluate the district with rearranged road space and network, given priority to bicycle, comparing the traditional district which are given priority to car from viewpoints of environment, safety and accessibility. As evaluation indicators, the carbon dioxide emission on the environment. the number of collision between car and bicycle on safety and an accumulated frequency measure on accessibility were used. As the result, it was clarified that bicycle road measures to create bicycle road by reallocation of road space and form bicycle exclusive network were effective.

Characteristics of Strength Change of Clay Mixing Eco-friendly Soil Binder and Microorganism (친환경 고결제와 미생물을 혼합한 점성토의 강도 변화특성)

  • Kim, Taeyeon;Park, Jongseo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.15-22
    • /
    • 2017
  • The soil improvement method so far has been developed with an emphasis on enhancing the strength of the ground. A soil improvement method using a excellent cementitious stabilizer in economical efficiency and handling property is mainly used. The soil improvement method using cementitious stabilizer is effective but environmental and human harmful substances are detected and environmental problems such as carbon dioxide emission and groundwater pollution are pointed out. Therefore, as part of an alternative method capable of solving such problems, researches on the soil improvement method incorporating biological technology are being actively carried out. This study was conducted to investigate the characteristics of strength change when mixed with environmentally friendly soil binder and microorganism in clay, and it was analyzed by uniaxial compression test, direct shear test, SEM, XRD. As a results of the test, we confirmed the cementation caused by microbially induced calcite precipitation and the strength increase enhancement by it.