• Title/Summary/Keyword: Transportation Capacity

Search Result 820, Processing Time 0.026 seconds

Measuring the Connectivity of Nodes in Road Networks (도로 네트워크의 노드 연계성 산정에 관한 연구)

  • Park, Jun-Sik;Gang, Seong-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.129-139
    • /
    • 2010
  • This study proposes a model for measuring the connectivity of nodes in road networks. The connectivity index between two nodes is characterized by the number of routes, degree of circuitousness, design speed, and route capacity between the nodes. The connectivity index of a node is then defined as the weighted average of the connectivity indexes between the node and other nodes under consideration. The weighting factor between two nodes is determined by the travel demand and distance between them. The application of the model to a toy network shows that it reasonably well quantifies the level of connectivity of nodes in the network. If flow of rail networks can be measured in the same scale as that of road networks and the capacity of rail links can be estimated, the model proposed in this paper could be applied to intermodal transportation networks as well.

DESIGN AND PERFORMANCE EVALUATION OF A CABBAGE LOADER

  • Chang, Y.C.;Cho, S.I.;Yeo, Y.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.480-488
    • /
    • 2000
  • Cabbage is the most important vegetables in korea. The cabbage production was based on arduous human labor. A comprehensive research for substituting the human work by machines has been performed at present. In general, cabbage is cultivated on hillside in korea. The harvested cabbage in a field and carrying it to a vehicle for transportation are very laborious work. Hand labor in cabbage transportation to the market damages the quality of cabbage and is also a cause to increase the cost of cabbage production. This study was to design and evaluate a prototype cabbage loader for deserving efficient and safe transportation of cabbage. The developed cabbage loader was a semi-tracked vehicle operated by a hydraulic system, allowing the safe transporting and the loading of cabbage in a steep field. The maximum loading capacity of the loader was 1.0 ton. By using safety devices attached to the loader, the static slopes were 34.0% and 37.4% for the left and the rear roll-over, respectively. The maximum field speed was about 6km/hr with two cabbage pallets of 750kg at a 25% inclined field. The field capacity was about 35 pallets/hr in case of picking up, carrying and unloading two cabbage pallets. The field efficiency of the loader was analyzed to be more than 8 times in comparison of the conventional human labor. The developed loader would be applied for loading and carrying the other vegetables due to the similarity of operations. The study suggested a standard approach to the design of field machines operated in a steep field.

  • PDF

An Improved LOS Analysis Method for Pedestrian Walkways Using Pedestrian Space (보행 점유공간을 이용한 보행자도로 서비스수준 분석방법론 개선 연구)

  • JUN, Sung Uk;SON, Yonug Tae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.168-179
    • /
    • 2016
  • This study describes an improved model for estimating pedestrian LOS (Level of Service) by utilizing the space occupied by pedestrians. The method introduced the concept of conflict along the bi-directional pedestrian flow which enables calculating conflict area and average travel time in walking. Especially, the method incorporates the idea of generalized density concept which can consider effective walking area and pedestrian flow rates that might vary during the analysis period. After establishing methodology, adjustments of pedestrian LOS criteria in term of walking space occupied by pedestrians were performed. As a result, walking-occupied space at capacity level is 0.68 and corresponding pedestrian flow rate was calculated as 80 persons/min/m, while different pedestrian-occupied spaces were ordered to classify LOS at the points where the gradient changes. Furthermore, the statistical verification of service levels has shown that there is significant difference among all LOS categories at 5% significance level.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

Mechanical behavior investigation of steel connections using a modified component method

  • Chen, Shizhe;Pan, Jianrong;Yuan, Hui;Xie, Zhuangning;Wang, Zhan;Dong, Xian
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • The component method is an analytical approach for investigating the moment-rotation relationship of steel connections. In this study, the component method was improved from two aspects: (i) load analysis of mechanical model; and (ii) combination of spring elements. An optimized component method with more reasonable component models, spring arrangement position, and boundary conditions was developed using finite element analysis. An experimental testing program in two major-axis and two minor-axis connections under symmetrically loading was carried out to verify this method. The initial rotational stiffness obtained from the optimized component method was consistent with the experimental results. It can be concluded that (i) The coupling stiffness between column and beam flanges significantly affects the effective height of the tensile-column web. (ii) The mechanical properties of the bending components were obtained using an equivalent t-stub model considering the bending capacity of bolts. (iii) Using the optimized mechanical components, the initial rotational stiffness was accurately calculated using the spring system. (iv) The characteristics of moment-rotation relationship for beam to column connections were effectively expressed by the SPRING element analysis model using ABAQUS. The calculations are simpler, and the results are accurate.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction

  • Haibo, Jiang;Haozhen, Fang;Jinpeng, Wu;Zhuangcheng, Fang;Shu, Fang;Gongfa, Chen
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.797-818
    • /
    • 2022
  • Steel-precast ultra-high-performance concrete (UHPC) composite beams with demountable high-strength friction-grip bolt (HSFGB) shear connectors can be used for accelerated bridge construction (ABC) and achieve excellent structural performance, which is expected to be dismantled and recycled at the end of the service life. However, no investigation focuses on the demountability and reusability of such composite beams, as well as the installation difficulties during construction. To address this issue, this study conducted twelve push-out tests to investigate the effects of assembly condition, bolt grade, bolt-hole clearance, infilling grout and pretension on the crack pattern, failure mode, load-slip/uplift relationship, and the structural performance in terms of ultimate shear strength, friction resistance, shear stiffness and slip capacity. The experimental results demonstrated that the presented composite beams exhibited favorable demountability and reusability, in which no significant reduction in strength (less than 3%) and stiffness (less than 5%), but a slight improvement in ductility was observed for the reassembled specimens. Employing oversized preformed holes could ease the fabrication and installation process, yet led to a considerable degradation in both strength and stiffness. With filling the oversized holes with grout, an effective enhancement of the strength and stiffness can be achieved, while causing a difficulty in the demounting of shear connectors. On the basis of the experimental results, more accurate formulations, which considered the effect of bolt-hole clearance, were proposed to predict the shear strength as well as the load-slip relationship of HSFGBs in steel-precast UHPC composite beams.

The Analysis of the Impact of Heavy Vehicles in Urban Freeway Basic Section (도시고속도로 기본구간의 서비스수준별 중차량 영향 분석)

  • Kim, Tae-Heon;Roh, Chang-Gyun;Son, Bong-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.75-83
    • /
    • 2012
  • This study is to find a shortcoming embedded in the current Korean Highway Capacity Manual (KHCM) on reflecting a heavy vehicle effect to the highway capacity. The KHCM suggests to handle the percent heavy vehicle to deal with its effect to a capacity regardless of density levels. Authors hypothesized in this study that the effect of heavy vehicles would vary at different levels of traffic density - the effect would be comparably insignificant when a density is low and it becomes comparably significant when it becomes high. Field data from a freeways located in Seoul were collected for 360 hours (15 days) and categorized them into a set of operation conditions grouped by 15 minutes and by the LOS density levels. Comparison between the field measured and the estimated by the KHCM method showed that the KHCM method overestimated the effect of heavy vehicles in LOS B and C but underestimated in LOS E. The results suggested that there be a difference pattern from the one the KHCM expected and brought discussion on further studies.

A study on Design and Evaluation of The Continuous Flow Intersection (연속교차로의 설계 및 평가에 관한 연구)

  • 박창수
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.5
    • /
    • pp.79-86
    • /
    • 1999
  • Traffic jams of our country are due to the shortage of roadway as compared with the traffic, however. they are sometimes due to inconsistency of the roadway capacity. Inconsistency of the roadway capacity comes from the difference of cycle length, phase length and number of Phase between major intersection and minor intersection. Specialty increasing number of Phase due to left-turn movements bring out decrease of the arterial capacity, deterioration of the arterial offset. The Purpose of this research is to introduce and analyze the continuous flow intersection to solve the bottleneck of the major intersection. The major contents of this research introduce the concept and design consideration for the continuous flow intersection and also analyze delay, fuel consumption and emissions among multiphase intersection, grade separated intersection and continuous flow intersection. This research analyze the sensitivities according to change of the left-turn traffic volume and also evaluate the cost-effectiveness through the total cost analysis among three of them.

  • PDF

A study on Left turn Capacity by Bay Length (Bay길이에 따른 좌회전 용량산정에 관한 연구)

  • 김정례;김기혁
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.31-39
    • /
    • 2002
  • The primary objective of this study is to develop a reliable method for estimating the left turn capacity at the signalized intersection. This study is performed during periods of congestion. Multi left turn lane(bay lane and exclusive lane) approaches are examined. When more than one left turn lane exists, traffic volumes are not distributed equally over each lane. The fundamental approach taken in this study is measuring headways on left turn lanes with altering the bay length from 20m to 120m. Left turn lane is divided into 3 sub-sections in this study. These are SLP section(start-up lost time Period), SFP section(saturation flow period), LSP section(lane selection period). Saturation flow rates are evaluated for each sub section periods. As a results of analysis, it has been confirmed that the left turn capacity can be estimated by left turn bay length and effective green time for left turn. The left turn bay length adjustment factor is suggested in this study.