• Title/Summary/Keyword: Transport temperature

Search Result 1,512, Processing Time 0.031 seconds

Calibration and Verification of a Tidal Prism Eutrophication Model for the Lynnhaven Bay (U.S.A)

  • PARK Kyeong;KUO Albert Y.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.964-973
    • /
    • 1997
  • A tidal prism eutrophication model, an one-dimensional intertidal model, is developed to study water quality conditions at small coastal basins and tidal creeks. The model simulates the physical transport processes using the concept of tidal flushing. The concept is simple and straightforward, and thus is ideal for small coastal basins with complex geometry. The model, having twenty-four state variables in the water column, simulates salinity, temperature, dissolved oxygen, three algal groups, and the cycles of carbon, nitrogen, phosphorus and silica. The model is applied to the Lynnhaven Bay, a small coastal basin of Chesapeake Bay in U.S.A. The model is calibrated using the field data collected in 1994, and then is verified using the independently collected data in 1980. The model overall gives a good reproduction of the field data, partly owing to the data collected from the field surveys specifically designed for the model application. This paper presents the procedure, and the results of the model calibration and verification.

  • PDF

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

Nozzle Effect for the Formation Enhancement of Methane Hydrate (메탄 하이드레이트 생성촉진을 위한 노즐 분사효과 연구)

  • Kim, Nam-Jin;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.8-14
    • /
    • 2008
  • Methane hydrate is crystalline ice-like compounds which consist of methane gas of 99% and over, and the estimated amount of gas contained in hydrates is about 1 trillion carbon Ton. Therefore, they have the potential for being a significant source for natural gas, and 1$m^3$ solid hydrates contain up to 172N$m^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, the tests were performed on the formation of methane hydrate by a nozzle. The result showed that utilizing nozzles dramatically reduces the time in hydrate formation, the pressure after the injection is decreased to be approximately 90% of experimental pressurethe, and gas consumption is higher about 3 times than that of subcooling test.

Radiative Transfer Schemes for Hydrodynamical Stellar Surfaces

  • Bach, K.;Robinson, F.J.;Kim, Y.C.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.24.4-25
    • /
    • 2009
  • We have investigated the radiational fields through a hydrodynamical stellar model atmosphere. Stellar convection zone is the extremely turbulent region composed of partly ionized compressible gases in high temperature. Moreover, super-adiabatic layers are the transition region in energy transport from convection to radiation. Therefore, opacities and thermodynamic properties due to interaction of matter and radiational fields vary significantly with depth. In order to describe radiational fields accurately, the Opacity Distribution Function (ODF) and the Accelerated Lambda Iteration (ALI) have been applied to hydrodynamic medium. As the first result of our radiative transfer, we present time-dependant variation of radiational fields and thermodynamic structures. Our non-gray transfer model has been compared with the conventional Eddington Approximation. Detailed information of radiational fields and thermodynamic properties will provide deeper insight of physical processes inside stellar atmospheres.

  • PDF

Conditional Moment Closure Modeling in Turbulent Nonpremixed Combustion (난류확산연소에서의 Conditional Moment Closure Modeling)

  • Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 2000
  • A brief introduction is given on the conditional moment closure model for turbulent nonpremixed combustion. It is based on the transport equations derived through a rigorous mathematical procedure for the conditionally averaged quantities and appropriate modeling forms for conditional scalar dissipation rate, conditional mean velocity and reaction rate. Examples are given for prediction of NO and OR in bluffbody flames, soot distribution in jet flames and autoignition of a methane/ethane jet to predict the ignition delay with respect to initial temperature, pressure and fuel composition. Conditional averaging may also be a powerful modeling concept in other approaches involved in turbulent combustion problems in various different regimes.

  • PDF

A Monte-Carlo method and Boltzmann Equation analysis on the electron swarm parameter in SiH$_4$+Ar mixtures gas. ($SiH_4+Ar$ 혼합기체의 전자군 파라미터에 대한 볼츠만 방정식 및 몬테 칼로법 해석)

  • 김대연;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.387-390
    • /
    • 1999
  • Electron swarm parameterdthe drift velocity and longitudinal diffusion coefficienthn $SiH_4-Ar$ mixtures containing 0.5% and 5% monosilane were measured using over the range of E/N from 0.01 to 300 Td at room temperature. Electron swarm parameters in argon were drastically changed by adding a small amount of monosilane. The electron drift velocity in both mixtures showed unusual behaviour against E/N. It had negative slope in the medium range of E/N, yet the slope was not smooth but contained a small hump. The longitudinal diffusion coefficient also showed a corresponding feature in its dependence on E/N. A two-tern approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

  • PDF

Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model

  • Villar-Cocina, E.;Valencia-Morales, E.;Vega-Leyva, J.;Antiquera Munoz, J.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and $100^{\circ}C$. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enables us to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

Experimental Study of the Effect of the Reservoir on CPL Operation (CPL의 운전에 미치는 레저버의 영향에 대한 실험적 연구)

  • Hwang, Hyung-Jin;Joung, Wuk-Chul;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2033-2038
    • /
    • 2008
  • The CPLs(capillary pumped loops) are two phase heat transfer devices which enable active control of operating temperature of heat absorbing elements(or evaporators). Although the CPLs gain increasing interests as promising heat transfer devices for future missions such as spacecraft and commercial applications, their intrinsic complexity in operating principles makes the widespread use of these devices difficult. The key element and main cause of this complexity in operating principles is the two phase hydrodynamic accumulator or reservoir which controls the saturation state of the remaining loop and, particularly for the CPLs, it is separated from the evaporator. Thus, in this study, the operating characteristics of the CPL is investigated experimentally and theoretically. Mainly focusing on the role of reservoir the thermodynamic operating principle is examined first and the experimentally obtained steady state and transient state operating characteristics are discussed in detail.

  • PDF

Absorption of Water Vapor into an Absorbing Binary Liquid Film Falling over a Horizontal Tube Bank (수평원관군상(水平圓管群上)의 이원흡수용액유동(二元吸收溶液流動)에 의(依)한 전달흡수특성(傳達吸收特性))

  • Kim, S.;Kim, Y.I.;Seo, S.C.;Hwang, D.K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.5
    • /
    • pp.583-589
    • /
    • 1988
  • Condensation of water vapor into an absorbent liquid of LiBr-water solution falling over a bank of water cooled horizontal tubes was investigated theoretically. The governing conservation equation for a re-defined physical transport phenomena were solved numerically using a finite difference method. Raw parameters were used in this study, since reliable experimental data is required prior to a dimensionless parametric study. The average values of wall heat transfer coefficient and interfacial absorption rate were defined to see the system performance. Other parameters include tube diameter, streamwise coordinate (and number of tubes in row), mass flow rate, and the wall temperature. The effects of these quantities on the absorption processes and suggestions for a rational system design have been presented.

  • PDF